{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用铁盐溶液浸渍的方法对黄磷水淬渣进行改性,以提高其对废水中As (Ⅲ)的去除效率。考察改性过程中铁盐种类、铁盐浓度、熟化温度及熟化时间四个因素对改性黄磷水淬渣吸附砷性能的影响:浸渍铁盐溶液为FeCl3、浓度0.8 mol/L、熟化温度80℃和熟化时间6 h。通过比表面积和孔径测定( BET)、扫描电镜(SEM)和傅里叶红外光谱( FT-IR)对改性前后黄磷水淬渣的表面性能和结构进行表征。在最佳条件下制备的改性黄磷水淬渣比表面积增大、Fe3+和-OH含量升高,对废水中As(Ⅲ)的去除率可达到99.1%。改性后的黄磷水淬渣表面有铁负载,增加了其对废水中As(Ⅲ)的吸附性能。","authors":[{"authorName":"王翠翠","id":"672595b0-4641-4cc6-a0c0-a5bf1537e9e0","originalAuthorName":"王翠翠"},{"authorName":"万荣惠","id":"10f56d23-f689-45a8-a62d-1ea275eaa810","originalAuthorName":"万荣惠"},{"authorName":"王六生","id":"779d7457-cccc-48ac-b525-7ca7115e2cac","originalAuthorName":"王六生"},{"authorName":"陈秋玲","id":"39221d7e-deee-49eb-b32b-c7b5d1062741","originalAuthorName":"陈秋玲"},{"authorName":"刘树根","id":"af76467a-e43d-4e45-aee5-4c8b049f4f2c","originalAuthorName":"刘树根"},{"authorName":"何文豪","id":"9cde500c-0ccb-4fa9-9a70-c36c368f6556","originalAuthorName":"何文豪"},{"authorName":"董国丽","id":"8c258f2f-7fc3-4306-bc4a-6139a1b8cf39","originalAuthorName":"董国丽"},{"authorName":"宁平","id":"40667b01-8652-4a6d-8d59-1f4a5ff9a4c7","originalAuthorName":"宁平"},{"authorName":"郜华萍","id":"fd433084-89d8-4405-9b30-993171945562","originalAuthorName":"郜华萍"}],"doi":"","fpage":"2980","id":"2ef6db4c-b356-481c-80b4-796394d4bf27","issue":"9","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"4748c797-97f1-494a-929e-c2287ea12d5d","keyword":"黄磷水淬渣","originalKeyword":"黄磷水淬渣"},{"id":"ded0e576-8478-401b-88da-cb05f0467cc9","keyword":"改性","originalKeyword":"改性"},{"id":"2d003386-68b5-413d-b3c6-9137104d8dc7","keyword":"含砷废水","originalKeyword":"含砷废水"},{"id":"85cd00be-192e-41ac-9cff-710c1696fc07","keyword":"FeCl3","originalKeyword":"FeCl3"},{"id":"c2cb5d76-b873-4b94-8235-bc043ba2aafb","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"gsytb201609051","title":"改性黄磷水淬渣的制备及其对含砷(Ⅲ)废水吸附性能的研究","volume":"35","year":"2016"},{"abstractinfo":"由于高炉水淬渣的生产工艺不同,造成了其水硬活性差异性较大,为高炉水淬渣这一固体废弃物的资源化利用带来难题.通过对高炉水淬渣的化学成分分析、XRD分析,初步对其活性进行判定.测试高炉水淬渣不同掺入量的试件强度,运用活性系数法和活性因子法分析其潜在水硬活性,且其水硬活性随时间的增长而增长.试验结果表明,该高炉水淬渣在水泥胶凝剂中的最佳掺入量为40%-50%.","authors":[{"authorName":"李辉","id":"9eefb5b7-9969-4e2b-a562-7e4da6622023","originalAuthorName":"李辉"},{"authorName":"王洪江","id":"80c5d185-3dd6-4aca-a5dd-d6a65b6accb6","originalAuthorName":"王洪江"},{"authorName":"仪海豹","id":"31c0c269-1a59-4550-a615-0db76b4c7dcc","originalAuthorName":"仪海豹"},{"authorName":"王勇","id":"f4be890d-c69d-443a-93cb-771ed9504d9f","originalAuthorName":"王勇"},{"authorName":"焦华喆","id":"420af57b-5b72-49d7-8ff1-daf82f3fccea","originalAuthorName":"焦华喆"}],"doi":"10.3969/j.issn.1001-1277.2011.10.006","fpage":"27","id":"3f7b490d-8331-456b-94d1-d7f240c59ced","issue":"10","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"5a3b24f9-8db7-4ede-87b0-d4c388792432","keyword":"高炉水淬渣","originalKeyword":"高炉水淬渣"},{"id":"55c2e1e4-a912-456f-941b-ab080497d5a4","keyword":"活性系数","originalKeyword":"活性系数"},{"id":"f19c64a7-bbf5-4e20-b37a-005adac88e3f","keyword":"活性因子","originalKeyword":"活性因子"},{"id":"15201008-2f32-487b-9b0b-ac16fe5b18c6","keyword":"最佳掺入量","originalKeyword":"最佳掺入量"}],"language":"zh","publisherId":"huangj201110006","title":"高炉水淬渣水硬活性及最佳掺入比例的研究","volume":"32","year":"2011"},{"abstractinfo":"采用水淬渣作为吸附剂对含铜电镀清洗废水进行处理,实验结果表明,对于pH为5.02,ρ(Cu2+)为20.06mg/L的含铜电镀清洗废水,常温下,采用6g/L水淬渣,作用t为20min,Cu2+去除率达99%,出水p(Cu2+)小于0.15mg/L,符合国家污水综合排放标准(GB8978-1996)的一级标准,达到以废治废的目的.","authors":[{"authorName":"张尊举","id":"adecffd7-181c-4ebd-bc3f-7c52958cdb17","originalAuthorName":"张尊举"},{"authorName":"李国会","id":"859505b4-fbe6-4338-9571-f5f8668af119","originalAuthorName":"李国会"},{"authorName":"董亚荣","id":"f7d3cfb2-7a84-47a3-aca0-10e301ff79f0","originalAuthorName":"董亚荣"}],"doi":"10.3969/j.issn.1001-3849.2012.10.013","fpage":"44","id":"05805e43-584d-45a9-9476-8798dec6537d","issue":"10","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"a1603867-97ce-4390-8283-45d45ea68943","keyword":"电镀废水","originalKeyword":"电镀废水"},{"id":"d89663a7-4ecb-4437-ab7c-467dd8aa8716","keyword":"水淬渣","originalKeyword":"水淬渣"},{"id":"cc8208fb-5dcc-46de-b072-cd878f84cbcd","keyword":"吸附","originalKeyword":"吸附"},{"id":"59d14593-99bf-4935-bc70-e0d2dcca8bcf","keyword":"Cu2+","originalKeyword":"Cu2+"}],"language":"zh","publisherId":"ddjs201210013","title":"水淬渣处理含铜电镀废水的研究","volume":"34","year":"2012"},{"abstractinfo":"采用将矿渣在不同温度重新熔融并水淬的方法制备了不同水淬渣样品,应用XRD、DTA等分析手段对不同样品的结构特征进行了分析,同时结合胶凝材料抗压强度实验,研究了不同水淬样品在潮湿环境保存7 d后的胶凝活性变化特点及原因.研究表明,形成过程对水淬渣在不同保存环境下胶凝活性的影响不同,较低水淬温度下形成水淬渣的胶凝活性在潮湿环境中下降最大,样品玻璃相中存在不同程度的分相结构是产生这一影响的主要原因.","authors":[{"authorName":"李宇","id":"5cd01c5f-f92f-433e-8a22-6e1bf83eeefb","originalAuthorName":"李宇"},{"authorName":"孙恒虎","id":"f35a8f40-2845-4aca-9100-7173ff427f3d","originalAuthorName":"孙恒虎"},{"authorName":"赵永宏","id":"cea4b9e4-37d8-46c0-ad24-8cffe26f7e96","originalAuthorName":"赵永宏"},{"authorName":"杜小满","id":"bd793202-e86e-4c90-bfe5-5eab0e2f7f7f","originalAuthorName":"杜小满"}],"doi":"","fpage":"580","id":"39ddfacf-8801-41a1-afdc-b52d079c7c93","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"154b1546-d2ea-457b-ba4d-7af898a763f1","keyword":"水淬渣","originalKeyword":"水淬渣"},{"id":"67986873-3540-4190-8824-235f61267fe8","keyword":"形成过程","originalKeyword":"形成过程"},{"id":"cd28268f-ff05-4433-b136-c129e0df24d2","keyword":"保存环境","originalKeyword":"保存环境"},{"id":"82d0cabf-af4d-450a-a357-a9427fb66a3f","keyword":"胶凝活性","originalKeyword":"胶凝活性"}],"language":"zh","publisherId":"xyjsclygc2007z2166","title":"保存环境对不同结构水淬渣活性的影响","volume":"36","year":"2007"},{"abstractinfo":"以水淬黄磷炉渣和自然冷却态黄磷炉渣为研究对象,采用熔融法制备CaO-Al2O3-SiO2系微晶玻璃.通过差热分析、X射线衍射和扫描电镜,并利用修正后的Johnson-Mehl-Avrami (JMA)方程和Augis-Bennett方程,分析了不同冷却方式下黄磷炉渣制备微晶玻璃的析晶规律.结果表明:不同冷却方式对微晶玻璃的析晶行为有所不同,水淬黄磷炉渣微晶玻璃的析晶活化能E为352.609 kJ/mol,自然冷却黄磷炉渣微晶玻璃的析晶活化能E为405.685kJ/mol;两种不同冷却方式的黄磷炉渣微晶玻璃的晶化机制均为三维体积晶化.水淬黄磷炉渣微晶玻璃中主晶相为硅灰石(CaSiO3)并含有少量的石英矿物;自然冷却黄磷炉渣微晶玻璃中主晶相为钙蔷薇辉石类(Ca(Mn2,Ca)Si2O6)和含铁硅灰石类固溶体((Ca,Fe) SiO3).以自然冷却渣制备的微晶玻璃性能优于水淬渣制备出的微晶玻璃.","authors":[{"authorName":"刘红盼","id":"22e353ec-ac3b-42b1-a03a-e9e561e77a1c","originalAuthorName":"刘红盼"},{"authorName":"黄小凤","id":"0057582a-0384-47a2-b25f-d51088a4d401","originalAuthorName":"黄小凤"},{"authorName":"马丽萍","id":"997c0d63-65a8-4032-a6d2-265bf3dd3ecf","originalAuthorName":"马丽萍"},{"authorName":"陈丹莉","id":"43dbd2ca-20f5-43f6-a606-09d5210f12dc","originalAuthorName":"陈丹莉"},{"authorName":"尚志标","id":"004bb88d-cadb-488d-a610-1355f683a934","originalAuthorName":"尚志标"},{"authorName":"蒋明","id":"69425e90-2545-4282-9615-d7add9ae46e6","originalAuthorName":"蒋明"}],"doi":"","fpage":"1937","id":"c937df41-37bf-45df-9a2c-31c228be3163","issue":"7","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"efbe497e-3b38-4aae-8ba8-a398731a0476","keyword":"水淬黄磷炉渣","originalKeyword":"水淬黄磷炉渣"},{"id":"ae37859d-59e8-44e6-b99a-2a0958e8b629","keyword":"自然冷却黄磷炉渣","originalKeyword":"自然冷却黄磷炉渣"},{"id":"48705282-1067-4c00-8533-76d6538008bf","keyword":"微晶玻璃","originalKeyword":"微晶玻璃"},{"id":"db2b6cd3-c69c-44db-9ede-d474b9cde64e","keyword":"析晶活化能","originalKeyword":"析晶活化能"}],"language":"zh","publisherId":"rgjtxb98201607039","title":"不同冷却方式黄磷炉渣微晶玻璃析晶动力学研究","volume":"45","year":"2016"},{"abstractinfo":"通过XRF和XRD分析除硅铜冶炼水淬渣的元素和物相特性,结合动力学分析,开展除硅铜渣硫酸化浸出的实验研究,考察了硫酸浓度、浸出时间、液固比、温度、粒径大小对铜和锌浸出率的影响.结果表明:在机械搅拌下,硫酸的浓度为2.5 mol/L,浸出时间为120 min,液固比(m/m)为4∶1,温度为70℃,粒径大小为200目时铜和锌的浸出率最高,此时铜和锌的浸出率分别为76.2%和98.3%.","authors":[{"authorName":"陈茂生","id":"9769e32e-d2f9-4a4e-9710-cc8a439b65b4","originalAuthorName":"陈茂生"},{"authorName":"朱心明","id":"f5a0bd2c-8116-4f8e-bc49-0e4e167164d4","originalAuthorName":"朱心明"},{"authorName":"许燕","id":"e930a001-e55f-44b2-9014-dcc8c4cd530b","originalAuthorName":"许燕"},{"authorName":"宁平","id":"e00b20d4-41af-4ca0-8fbb-fa5e2ff68475","originalAuthorName":"宁平"},{"authorName":"马懿星","id":"1cf939ea-513d-41c1-9539-bd6ffdaea1f0","originalAuthorName":"马懿星"},{"authorName":"韩子荣","id":"0b0e274a-5c02-4c62-8497-8d0149a27ca0","originalAuthorName":"韩子荣"}],"doi":"10.11896/j.issn.1005-023X.2014.18.022","fpage":"86","id":"6834f158-d703-4d6d-b4ef-f5ca36c024ce","issue":"18","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9f10787f-3e62-420b-9515-6827fdb201d9","keyword":"硫酸化浸出","originalKeyword":"硫酸化浸出"},{"id":"1291df64-060a-4d0c-9628-3bc3b16c5e82","keyword":"铜冶炼渣","originalKeyword":"铜冶炼渣"},{"id":"585dbaa3-1409-4726-83b5-3146f01045c0","keyword":"XRF","originalKeyword":"XRF"},{"id":"99fa26e2-f214-494a-972e-749c9f4a7b63","keyword":"XRD","originalKeyword":"XRD"}],"language":"zh","publisherId":"cldb201418022","title":"除硅铜冶炼水淬渣的硫酸化浸出实验","volume":"28","year":"2014"},{"abstractinfo":"研究了以高炉水淬渣合成的Ca-α-Sialon粉体为原料制备Ca,Y复合掺杂α-Sialon陶瓷的无压烧结工艺及Y2O3加入量对显微组织及相组成的影响.结果表明,试样中Ca-α-Sialon呈等轴晶粒,(Ca/Y)-α-Sialon呈柱状晶粒.晶粒形状受控于Y3+的固溶量与烧结温度.随着Y2O3含量增加,柱状晶数量增加.随着烧结温度提高,α-Sialon柱状晶出现粗化和等轴化.","authors":[{"authorName":"朱喆","id":"878e56ee-6d77-4435-b331-20bafcb8f51c","originalAuthorName":"朱喆"},{"authorName":"茹红强","id":"832120b2-31f5-4d56-b89b-4ec30b8612df","originalAuthorName":"茹红强"},{"authorName":"常青","id":"39b1613f-5033-4ae2-a841-2bc2c27da54f","originalAuthorName":"常青"},{"authorName":"喻亮","id":"e5398a54-e825-4833-912e-0c024963a495","originalAuthorName":"喻亮"},{"authorName":"王华川","id":"cfcd45a7-5136-4b3c-a8ca-12835617760b","originalAuthorName":"王华川"}],"doi":"10.3969/j.issn.1671-6620.2007.03.012","fpage":"220","id":"715c5a30-d1e5-452a-ab0c-057a5eb213b4","issue":"3","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"6a6ac179-a65e-49bf-a356-aa4ba6e1d127","keyword":"陶瓷材料","originalKeyword":"陶瓷材料"},{"id":"2e9e4021-4454-41cd-ae59-0a5810272e2b","keyword":"(Ca/Y)-αSialon","originalKeyword":"(Ca/Y)-αSialon"},{"id":"a601df7d-bf45-4cde-863f-f7076d385ecf","keyword":"无压烧结","originalKeyword":"无压烧结"},{"id":"7285f4a5-517d-4e25-8e59-e69ac08e1c92","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"clyyjxb200703012","title":"高炉水淬渣制备(Ca/Y)-α-Sialon陶瓷材料及其显微组织","volume":"6","year":"2007"},{"abstractinfo":"以高炉水淬渣合成的Ca-α-Sialon粉体为原料采用无压烧结技术制备了(Ca/Y)-α-Sialon陶瓷. 通过用排水法、三点弯曲实验法、金相显微镜法、 XRD法等手段研究了(Ca/Y)-α-Sialon陶瓷的烧结致密化过程、材料的力学性能、显微组织、相组成和材料的断裂特征. 结果表明, 适量的Y2O3促进材料的烧结致密化和提高材料的力学性能, 但Y2O3过量(大于10%)时对材料的烧结和力学性能不利. 掺杂Y3+的(Ca/Y)-α-Sialon呈柱状晶, 随着Y2O3含量的增加和烧结温度的提高, (Ca/Y)-α-Sialon呈柱状晶出现粗化和等轴化. 含10%Y2O3的材料在1700 ℃烧结时可获得较高的力学性能.","authors":[{"authorName":"朱喆","id":"69235129-8dca-44d1-9f18-0788edf4d3eb","originalAuthorName":"朱喆"},{"authorName":"茹红强","id":"f2744b54-9ab5-4b60-916a-9130f76967cf","originalAuthorName":"茹红强"},{"authorName":"常青","id":"7da0be5e-1251-4649-b4e6-61f81e6ac602","originalAuthorName":"常青"},{"authorName":"喻亮","id":"68e32a0f-fe11-4727-8580-ffa883f1633a","originalAuthorName":"喻亮"},{"authorName":"吕鹏","id":"b8fd839b-1c17-4559-ad74-47db05a2b0ec","originalAuthorName":"吕鹏"}],"doi":"","fpage":"637","id":"69e9e0bd-cbae-4845-a967-33a93e6d9e88","issue":"5","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"e2c89e55-e0f1-4354-9b55-33d01fc8819b","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"a398217e-407a-4192-a607-79dab6178f28","keyword":"(Ca/Y)-α-Sialon","originalKeyword":"(Ca/Y)-α-Sialon"},{"id":"3a574b1b-e9f9-49e6-858a-040931eb9e3b","keyword":"水淬渣","originalKeyword":"水淬渣"},{"id":"af16dc25-c085-4d2d-a733-9b1408ce1c15","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"566255e9-13b3-494b-a02f-38a6d5783aef","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"3b8df7f3-5406-4060-9b50-ba4c65e7c90a","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb200705022","title":"利用高炉水淬渣制备(Ca/Y)-α-Sialon陶瓷的组织与性能","volume":"25","year":"2007"},{"abstractinfo":"采用超危垃圾焚烧飞灰(Ultra-risk MSWI fly ash)高温复合熔融矿渣制备重构水淬渣,研究不同掺量重构水淬渣对水泥复合体系性能和重金属浸出毒性的影响.结果表明:当重构水淬渣掺量不高于30%时,其复合水泥体系标准稠度用水量与纯水泥试样相比增加量不高于3.6%,初、终凝延长时间分别不高于5.3%和5.4%,3d和28 d抗压强度降低量分别不高于14.2%和23.1%.随重构水淬渣掺量增加试件的重金属浸出毒性增加量极小,其中重金属Cu的浸出毒性基本不变,随龄期延长各试件的重金属浸出毒性明显降低,且均远远低于固体废物浸出毒性鉴别标准限值,可安全消纳于建材领域.","authors":[{"authorName":"罗忠涛","id":"0aeab7d1-5146-4aa8-aa4e-0dd4b6fc5483","originalAuthorName":"罗忠涛"},{"authorName":"郑亚然","id":"85e37417-c1a2-4c60-a8e0-0a5d013ec4e1","originalAuthorName":"郑亚然"},{"authorName":"卢冰洁","id":"e46e2f04-d4dd-4bbb-8394-16a59884fb7c","originalAuthorName":"卢冰洁"},{"authorName":"殷会玲","id":"07017bef-74b7-4be4-a49a-cb23ad6b7b90","originalAuthorName":"殷会玲"},{"authorName":"肖宇领","id":"b414599e-8bca-4691-a2fb-b31d8bf297c8","originalAuthorName":"肖宇领"},{"authorName":"张磊","id":"ec7de99b-c3f7-4a97-bbf6-2d0c3f05d99a","originalAuthorName":"张磊"},{"authorName":"杨久俊","id":"68025688-3e9c-45e5-a479-562058a676f4","originalAuthorName":"杨久俊"}],"doi":"","fpage":"999","id":"59d10068-e716-46c3-842e-ac3f21c3c47c","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"edaf4b01-9d05-4b38-b3cb-123057b8c77b","keyword":"超危垃圾焚烧飞灰","originalKeyword":"超危垃圾焚烧飞灰"},{"id":"47caa5df-af9e-40a3-aae8-af38a59cd267","keyword":"重构水淬渣","originalKeyword":"重构水淬渣"},{"id":"069aee6e-99a7-42a4-8690-f8471b59364b","keyword":"水泥性能","originalKeyword":"水泥性能"},{"id":"f966fd29-cf66-4ae3-88e5-fb3e815f8211","keyword":"浸出毒性","originalKeyword":"浸出毒性"}],"language":"zh","publisherId":"gsytb201405002","title":"不同掺量超危垃圾焚烧飞灰重构水淬渣-水泥性能及重金属浸出毒性研究","volume":"33","year":"2014"},{"abstractinfo":"通过X射线衍射分析、扫描电子显微镜、热重差热分析仪以及化学分析对铅冶炼渣进行系统矿物特征研究。结果表明:铅冶炼渣中主要金属矿物为硅锌矿、锌黄长石、锌铁尖晶石、方铁矿以及金属铅。锌元素高度分散在玻璃渣相中,其中锌在硅酸盐中占66.28%(质量分数),在铁酸盐中占31.63%(质量分数),选矿回收有价金属锌需要以含锌矿物矿相重构为基础。金属铅与锌铁尖晶石伴生,可以采用强磁选回收锌铁尖晶石而富集金属铅。铅冶炼渣的水溶液为弱碱性,水溶液pH值与渣料的粒度大小有关。在强酸或强碱条件下,金属的溶解行为不同,控制碱性浸出条件可作为冶炼渣中铅选择性提取的有效方法。","authors":[{"authorName":"覃文庆","id":"e628d6b5-5cf7-4aa8-a3f8-202b1f879b2c","originalAuthorName":"覃文庆"},{"authorName":"郑永兴","id":"22997e66-15fd-49db-b15f-9c0c47a91a78","originalAuthorName":"郑永兴"},{"authorName":"刘维","id":"d1757a6a-72d9-483e-a4d2-ca800e675208","originalAuthorName":"刘维"},{"authorName":"孔燕","id":"7766c218-4a88-4594-82af-ef58f03cace1","originalAuthorName":"孔燕"},{"authorName":"韩俊伟","id":"a2d89752-d54a-485e-acb9-62e910984111","originalAuthorName":"韩俊伟"},{"authorName":"罗虹霖","id":"0b32578f-300b-4121-bd8e-f007481815f2","originalAuthorName":"罗虹霖"},{"authorName":"刘三军","id":"20446319-c59e-49c9-b9a4-045ac7853cbb","originalAuthorName":"刘三军"}],"doi":"","fpage":"262","id":"0388e9b9-22d7-48ef-9ca7-7aeae8af081b","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"5a226923-dbed-4a0d-b927-2a4adb10b091","keyword":"铅冶炼渣","originalKeyword":"铅冶炼渣"},{"id":"27b006ed-08cd-4276-851c-c38313397844","keyword":"铅","originalKeyword":"铅"},{"id":"93ac55d3-a2cf-4412-9032-570b5ec47a18","keyword":"锌","originalKeyword":"锌"},{"id":"35f4d46d-ebe1-4aba-af16-fdac371a608b","keyword":"金属回收","originalKeyword":"金属回收"},{"id":"f3dbc94a-167b-47a8-9eb7-75f34f9934d2","keyword":"矿物特征","originalKeyword":"矿物特征"}],"language":"zh","publisherId":"zgysjsxb201401033","title":"鼓风炉水淬铅冶渣的矿物特征","volume":"","year":"2014"}],"totalpage":1623,"totalrecord":16221}