TIAN Yong
,
LI Zhuang
钢铁研究学报(英文版)
Warm deformation tests were performed using a kind of tubby heater. The microstructures and mechanical properties of an Fe-C-Mn-Si multiphase steel resulting from different warm deformation temperatures were investigated by using LOM (light optical microscopy), SEM and XRD. The results indicated that the microstructure containing polygonal ferrite, granular bainite and a significant amount of the stable retained austenite can be obtained through hot deformation and subsequent austempering. Warm deformation temperature affects the mechanical properties of the hot rolled TRIP steels. Ultimate tensile strength balance reached maximum (881 MPa) when the specimen was deformed at 250 ℃, and the total elongation and strength-ductility reached maximum (38% and 28614 MPa·%, respectively) at deforming temperature of 100 ℃. Martensite could nucleate when austenite was deformed above Ms, because mechanical driving force compensates the decrease of chemical driving force. The TRIP effect occurs in the Fe-C-Mn-Si multiphase steel at deforming temperature ranging from 15 to 350 ℃. The results of the effects of warm deformation on the mechanical properties of the Fe-C-Mn-Si multiphase steel can provide theoretical basis for the applications and the warm working of the hot rolled TRIP sheet steels in industrial manufacturing.
关键词:
warm deformation
,
Fe-C-Mn-Si multiphase steel
,
TRIP effect
,
mechanical property
ZHAO Xin
,
YANG Xiao-ling
,
JING Tian-fu
钢铁研究学报(英文版)
In order to investigate the effect of initial microstructure on warm deformation behavior, some specimens of 45 steel were annealed and some quenched. Then the specimens were isothermally compressed on a Gleeble 3500 machine. The deformation temperature range was 550 to 700 ℃ and the strain rate range was 0.001 to 0.1 s-1. An optical microscope (OM) and a transmission electron microscope (TEM) were used to study the microstructures. The results show that the microstructure of annealed specimens is ferrite and pearlite and that of quenched specimens is martensite. The flow stress of quenched specimens is higher than that of annealed ones at 550 ℃ when strain rates are greater than 0.001 s-1. However, at 600 to 700 ℃ and strain rate of 0.001 s-1, the whole flow curves of quenched specimens are below that of annealed ones. Under the rest conditions, the flow stress of quenched specimens is higher at the beginning of compression and then the opposite is true after the strain is greater than a critical value. The microstructure examination proves that the tempering and dynamic recrystallization easily occur in the specimens with martensite during warm compression, which results in the above phenomena.
关键词:
warm deformation
,
flow stress
,
steel
,
microstructure