王智
,
张果
,
王剑平
,
杨俊东
,
杨奇
,
尹丽琼
钢铁研究
为了有效预测双机架炉卷轧机的轧制力,使热轧板带材生产具有很好的可操作性,采用粒子群算法(PSO)优化BP神经网络,建立了往复式双机架炉卷轧机轧制力预测的智能模型.以某钢厂热轧产品Q195实测数据作为试验样本,并将粒子群算法优化的BP神经网络模型和标准BP网络模型分别用于轧制力预测,结果表明PSO-BP神经网络模型在预报精度上明显优于标准BP网络模型,并且PSO-BP神经网络模型预测轧制力的误差率控制在10 %以内.
关键词:
双机架炉卷轧机
,
粒子群
,
BP神经网络
,
轧制力