左海滨
,
张建良
,
王筱留
钢铁
从分析目前高炉炼铁碳消耗的本质出发,针对给定的原燃料条件,利用模型计算分析了当前主要低碳炼铁途径的节碳潜力。结果表明:对于普通高炉而言,间接还原达到平衡时的煤气利用率为56.99%,降低燃料比28.37kg/t。氧气高炉炉顶煤气完全循环利用条件下,最低燃料比为385.6kg/t。喷吹焦炉煤气可以降低燃料比,每增加10m3喷吹量,可降低焦比5.0kg/t左右;此外喷吹量存在极值,随着富氧率提高,获得最低燃料比的喷吹量增大,且最低燃料比降低。最佳喷吹条件为富氧率6%~8%,喷吹量160~180m3/t,可节约焦比53~54kg/t。使用高反应性焦炭可以降低热储备区温度,使间接还原平衡时CO浓度降低,平衡CO浓度从70%~60%,每降低2.5%,理论上可降低燃料消耗10.3~12.2kg/t,且降低幅度逐渐减小。
关键词:
低碳炼铁
,
氧气高炉
,
煤气循环
,
高反应性焦炭
薛庆国
,
韩毅华
,
王静松
,
孔令坛
钢铁
介绍了炉顶煤气循环—氧气鼓风高炉炼铁技术的研发进展,阐述了碳捕捉及封存技术(CCS)的特点及其技术成熟度,重点分析了几种CO2分离方法的原理及其适用条件,最后应用IPCC2006方法计算分析了结合碳捕捉及封存技术的炉顶煤气循环氧气鼓风高炉的CO2减排效果。结果表明:新工艺的吨铁CO2排放量为582.40 kg,较传统高炉CO2减排55%。结合碳捕捉及封存技术的炉顶煤气循环氧气鼓风高炉炼铁技术的开发,能够促进中国钢铁工业CO2减排,对钢铁工业的可持续发展具有十分重要的现实意义和深远影响。
关键词:
CO2减排
,
CCS
,
氧气鼓风
,
煤气循环
,
结合