欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1)
  • 图书()
  • 专利()
  • 新闻()

一种基于RBF神经网络的打印机光谱预测模型

于海琦 , 刘真 , 田全慧

影像科学与光化学 doi:10.7517/j.issn.1674-0475.2015.03.238

本文提出一种基于RBF(Radial Basis Function,径向基函数)神经网络的打印机光谱预测模型,通过扩展神经网络模型输入变量的项数提高模型的预测精度,扩展项多采用通道驱动值的交叉值、平方值.实验结果表明[1 cmy]项的引入能够有效提高模型的预测精度,同时提高网络的泛化能力.而引入[cm2 cy2 mc2 my2 yc2 ym2]项会导致模型预测精度以及泛化能力降低.[1 cmy]、[c2m2y2]和[cmcy my]项的组合在预测精度和模型泛化能力上均是最优化的,对总样本预测的色度精度为0.475ΔE00,光谱精度RMSE为0.43%.因此选择[1 cmy c2m2y2 cmcy my c m y]作为输入变量的RBF神经网络训练模型是满足高精度光谱预测的最优模型.

关键词: RBF神经网络 , 光谱预测 , 打印机 , 扩展项

出版年份

刊物分类

相关作者

相关热词