{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以硅溶胶为硅源,钛酸四丁酯为钛源,四丁基氢氧化铵(TBAOH)为模板剂,采用改进的方法合成了高结晶度的TS-2分子筛,并对所合成样品用FT-IR XRD,SEM,29Si MASNMR,ICP和N2吸附等方法进行了结构表征.实验中发现原料内添加适量氨水可使产品晶粒减小,骨架钛含量增加,比表面积和孔容增大,有利于提高其催化活性.另外,将晶化后母液中的TBAOH循环使用,也能得到结晶度高和催化性能良好的TS-2.采用本文推荐的合成原料和方法可大幅度降低TS-2的合成成本.","authors":[{"authorName":"熊春荣","id":"52e01ad0-3089-45e7-8a03-d0928fc841e9","originalAuthorName":"熊春荣"},{"authorName":"高焕新","id":"80f925e6-9312-4b0a-baa5-db2099fe54e1","originalAuthorName":"高焕新"},{"authorName":"陈庆龄","id":"74a52c22-a4b7-42db-9b5c-37f02c77560c","originalAuthorName":"陈庆龄"},{"authorName":"高滋","id":"16d7f777-c2c7-4b7c-a662-e43cf78c8bc2","originalAuthorName":"高滋"}],"doi":"","fpage":"423","id":"d05f7d3c-fb47-4730-b1d6-6e65a8645525","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"a2cee638-b084-4d6f-bde9-da28c810e676","keyword":"TS-2分子筛","originalKeyword":"TS-2分子筛"},{"id":"e87e1b81-cb64-441b-ab76-c40150c6b46c","keyword":"硅溶胶","originalKeyword":"硅溶胶"},{"id":"73615bb1-0845-42fc-8d84-46d90919db8e","keyword":"氨","originalKeyword":"氨"},{"id":"ff152f97-3c8c-4199-bc98-27d023c884a1","keyword":"母液循环利用","originalKeyword":"母液循环利用"}],"language":"zh","publisherId":"cuihuaxb199904012","title":"TS-2钛硅分子筛合成原料和方法的改进","volume":"20","year":"1999"},{"abstractinfo":"通过对江西某石煤提钒沉钒母液的性质分析,系统考察了沉钒母液循环利用对反萃现象、反萃剂H+浓度、V的反萃率、V2O5产品质量等影响,确定了该沉钒母液循环利用方式.研究表明:沉钒母液中含有高浓度的Al,SO42-,NH4+;等离子,不经处理直接返回提钒工艺的反萃阶段,会析出NH4Al(SO4)2·12H2O晶体,给原有提钒工艺带来反萃率下降、反萃现象异常等不利影响;采用石灰乳中和法调节沉钒母液的pH值至10,固液分离后将处理液中加入硫酸配制成8%稀H2SO4溶液,作为反萃剂返回提钒作业,可实现沉钒母液循环利用;在沉钒母液循环利用的过程中反萃现象正常,反萃剂的H+浓度在2.75~2.85 mol·L-1波动,V的反萃率维持在99.2%~ 99.3%波动,V2O5产品质量均可达到GB3283-1987(V2O5-98)的标准.","authors":[{"authorName":"刘涛","id":"19484b3b-78fd-4084-8332-d37d30ce574c","originalAuthorName":"刘涛"},{"authorName":"张国斌","id":"d0628d87-c254-4b0a-ab1d-1a2f2b3c0941","originalAuthorName":"张国斌"},{"authorName":"张一敏","id":"b58bca22-ccd9-43a3-a14f-919020fbf095","originalAuthorName":"张一敏"},{"authorName":"黄晶","id":"26dc064d-c04c-4c42-8870-fb2081b26ae5","originalAuthorName":"黄晶"},{"authorName":"付朝阳","id":"bc5ce244-9ff7-42ce-b755-57420936db20","originalAuthorName":"付朝阳"},{"authorName":"师启华","id":"f6be418f-d339-4b66-abae-22e73830f5ee","originalAuthorName":"师启华"}],"doi":"10.13373/j.cnki.cjrm.2016.01.014","fpage":"85","id":"3a91f0a0-5c78-4a22-b52b-cab991aaf996","issue":"1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"900f7558-32f7-48db-8b5e-2987de09a364","keyword":"沉钒母液","originalKeyword":"沉钒母液"},{"id":"fe73b68a-e411-47e2-966c-87f20436e49e","keyword":"循环利用","originalKeyword":"循环利用"},{"id":"3a76be4f-68e0-4a47-b692-53d503295aad","keyword":"石煤提钒","originalKeyword":"石煤提钒"},{"id":"9c0fd7bc-ac90-4bdd-9e1b-f0746a891585","keyword":"反萃","originalKeyword":"反萃"}],"language":"zh","publisherId":"xyjs201601014","title":"石煤提钒沉钒母液循环利用研究","volume":"40","year":"2016"},{"abstractinfo":"采用化学沉淀法制备的高电化学性能的球形Ni(OH)2,通常需要加入氨水作配合剂,但制备完成后会产生大量含氨的废液.通过对母液循环利用的研究,实现了含有Ni(OH)2晶种的部分母液循环使用.采用SEM、充放电测试、循环性能测试等手段分析了晶种含量、母液循环量对镍电极性能的影响.结果表明,含有晶种的母液比不含晶种的母液制得的Ni(OH)2晶体表面更光滑,球形度更好;晶种的含量取在6~9 g/L反应8 h时,制备的Ni(OH)2晶体振实密度大于1.90 g/cm3,粒径在10μm左右,放电容量达200 mA·h/g;母液循环量不超过20%,Ni(OH)2产品中SO2-4的含量低于0.3%;在晶种含量为9 g/L,母液循环量为20%,反应10 h条件下得到的球形Ni(OH)2产品放电容量为215.06 mA·h/g,1.2V以上的放电容量达到153.33 mA·h/g,占总放电容量的71.3%,明显高于同条件下不含晶种的产品性能,不仅减少了含氨废液的排放量和废液的处理量,而且有利于提高Ni(OH)2的振实密度和球形度,并可有效缩短制备反应的时间.","authors":[{"authorName":"董琪","id":"b031cf91-f57a-48c2-bde5-6f394dd5121e","originalAuthorName":"董琪"},{"authorName":"韩恩山","id":"93a1cbc0-e099-4a75-ac56-f433a1a2cea1","originalAuthorName":"韩恩山"},{"authorName":"闫艳波","id":"952591d5-a20d-44ee-931d-dbd8f0101e51","originalAuthorName":"闫艳波"},{"authorName":"康红欣","id":"b4283447-d30d-49aa-890c-d332e12dda74","originalAuthorName":"康红欣"}],"doi":"10.3969/j.issn.1000-0518.2007.09.008","fpage":"1009","id":"c078bc09-60c9-49a2-855a-3a2797dac84c","issue":"9","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"ca54a682-71a7-42ca-9d5e-0cce52ba7fe1","keyword":"Ni(OH)2","originalKeyword":"Ni(OH)2"},{"id":"57830675-43ef-4491-8db0-f8d2b0104698","keyword":"制备","originalKeyword":"制备"},{"id":"86869750-067f-41bc-b76b-a9d514f2f64c","keyword":"晶种","originalKeyword":"晶种"},{"id":"c073f280-42c4-4140-ba35-4048b5cdd335","keyword":"母液","originalKeyword":"母液"},{"id":"efa64599-d4e2-4526-acfd-853444d5945e","keyword":"循环使用","originalKeyword":"循环使用"}],"language":"zh","publisherId":"yyhx200709008","title":"含有晶种的母液在Ni(OH)2制备中的循环使用","volume":"24","year":"2007"},{"abstractinfo":"介绍了国内外废旧聚酯循环利用的新工艺与新方法.物理循环新技术通过熔融、净化、固态缩聚等过程制得高质量的再生聚酯;化学循环技术可获得高纯度的聚酯单体,用作直接合成新聚酯,并构成闭路循环的绿色化工过程.","authors":[{"authorName":"张昊宏","id":"654fa154-5724-4e2e-8c56-fe495372f227","originalAuthorName":"张昊宏"},{"authorName":"相宏伟","id":"7a796bd0-8100-458e-9d31-dee24421f537","originalAuthorName":"相宏伟"},{"authorName":"杨勇","id":"f5fc0d4f-d8ed-4629-8ea4-906c83fed81d","originalAuthorName":"杨勇"},{"authorName":"李永旺","id":"c9abf95f-ebfc-4a4b-ab14-9c08178f5f89","originalAuthorName":"李永旺"}],"doi":"","fpage":"6","id":"72a9b341-cebe-41b3-80d9-57afe8fe547f","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"2fdc4d42-290d-42d4-b8df-b1a4604f8348","keyword":"废旧聚酯","originalKeyword":"废旧聚酯"},{"id":"1cf49984-f9cf-42ff-b117-8de105ff97ca","keyword":"物理循环","originalKeyword":"物理循环"},{"id":"52f469d1-46e6-467d-94f8-51a4824b2d4a","keyword":"化学循环","originalKeyword":"化学循环"},{"id":"65cb0242-217b-4fd0-a3a7-960552580bca","keyword":"闭路循环","originalKeyword":"闭路循环"}],"language":"zh","publisherId":"gfzclkxygc200306002","title":"聚酯循环利用新进展","volume":"19","year":"2003"},{"abstractinfo":"LF热态渣的循环利用可减少废渣排放,降低对环境的危害.对LF热态循环渣的脱硫能力及可回收性进行了分析,热态循环渣返回LF炉和转炉参与冶金反应后,可大幅降低渣料消耗,LF炉每罐回收热态循环渣1~1.5 t,平均节省石灰及其他助溶剂用量5 kg/t(钢),转炉每罐回收热态循环渣3~5 t,渣料消耗平均降低10~15 kg/t(钢).采用热态循环渣配加石灰的LF炉造渣制度后,在相同的处理时间内,处理终点钢水中硫质量分数与常规处理几乎相同,同时节省了能源消耗,但必须考虑对钢水增硅、增锰的影响.热态循环渣返回转炉后导致入炉铁水温度低及吹炼过程渣量较大,因此转炉吹炼全程以低枪位操作更为适宜.在不影响生产组织的情况下,热态渣以返回转炉循环利用为最佳途径.","authors":[{"authorName":"赵成林","id":"b7607e6e-a5c1-405f-8222-511bf77b7725","originalAuthorName":"赵成林"},{"authorName":"张宁","id":"a429cf9e-2c23-473b-932b-8a57c48164ac","originalAuthorName":"张宁"},{"authorName":"朱晓雷","id":"8daf61ab-54a7-4e59-9019-a029e8a32f56","originalAuthorName":"朱晓雷"},{"authorName":"张维维","id":"73dc8046-a1b5-4273-8a99-3ff037625a1f","originalAuthorName":"张维维"},{"authorName":"王丽娟","id":"2ed1ec09-3308-4821-880a-4eb20c45dd61","originalAuthorName":"王丽娟"}],"doi":"10.13228/j.boyuan.issn0449-749x.20150237","fpage":"110","id":"3d344f5f-cbbe-43c1-a21d-6407aed0540d","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"f75466c1-9fc2-4b36-8217-9dd2468755f1","keyword":"热态渣","originalKeyword":"热态渣"},{"id":"4877d473-8f97-46a7-b4e9-e5a6334fd188","keyword":"脱硫","originalKeyword":"脱硫"},{"id":"85558664-d36c-4b66-a572-739c0882f610","keyword":"LF精炼","originalKeyword":"LF精炼"},{"id":"50490c7c-a2ea-4269-a305-3a9977658c75","keyword":"转炉","originalKeyword":"转炉"}],"language":"zh","publisherId":"gt201512020","title":"LF热态渣循环利用技术","volume":"50","year":"2015"},{"abstractinfo":"莱钢炼钢厂通过清洁生产审核、清洁生产新技术的实施及循环经济炼钢高效生产链、工业用水循环链、二次能源同收利用循环链和同体副产品利用循环链4条循环链的建立,使莱钢炼钢厂节能减排任务顺利完成的同时取得了较大的社会效益和环境效益.","authors":[{"authorName":"张永青","id":"6e61bb7c-1617-4c54-adad-84953e3276b7","originalAuthorName":"张永青"},{"authorName":"孙翠华","id":"f6f4272d-db8a-4f0a-a1fe-4b83534ae8c2","originalAuthorName":"孙翠华"},{"authorName":"费燕","id":"cbf7f268-0b27-4219-81fd-5164f28273d4","originalAuthorName":"费燕"}],"doi":"","fpage":"39","id":"ab2df486-d451-4579-9743-46c3c8d6bcdc","issue":"3","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"d55b82ba-f47f-4d47-86f6-079d4920b3b1","keyword":"清洁生产审核","originalKeyword":"清洁生产审核"},{"id":"481547ee-3dfa-49d1-82cc-f215310eb6e4","keyword":"循环利用","originalKeyword":"循环利用"},{"id":"53ac0500-90d4-4bc1-a247-adbba67c22c0","keyword":"高效生产链","originalKeyword":"高效生产链"},{"id":"8b880af8-edcb-47ff-baf8-12208dbb9be9","keyword":"二次能源","originalKeyword":"二次能源"}],"language":"zh","publisherId":"zgyj201003010","title":"炼钢厂清洁生产与循环利用的实践","volume":"20","year":"2010"},{"abstractinfo":"通过对河东金矿选矿废水循环利用的研究,阐述了废水循环利用是节约用水,降低选矿成本,提高矿山经济效益、社会效益和环境效益的有效途径.","authors":[{"authorName":"马杰","id":"4edb1617-14b5-4b5d-9d46-40761ea2e5a1","originalAuthorName":"马杰"},{"authorName":"王建国","id":"d7ab5ae8-4612-462d-b482-23cb1484fa54","originalAuthorName":"王建国"}],"doi":"10.3969/j.issn.1001-1277.2002.08.011","fpage":"39","id":"72923191-5157-47bf-8f50-958ab64fdec1","issue":"8","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"a0e9836c-fda5-4568-adfc-7c27f5369919","keyword":"选矿废水","originalKeyword":"选矿废水"},{"id":"63299f04-b221-40ad-b710-464b1a184b11","keyword":"回收","originalKeyword":"回收"},{"id":"21e4e994-7d80-4dd4-bdbe-b02f235b7f98","keyword":"循环利用","originalKeyword":"循环利用"}],"language":"zh","publisherId":"huangj200208011","title":"河东金矿选矿废水循环利用实践","volume":"23","year":"2002"},{"abstractinfo":"综述了目前废旧橡胶回收和循环利用的现状和发展趋势,主要包括废旧橡胶的直接利用、磨成胶粉后利用、通过再生胶重新利用、热分解后利用以及燃烧等.","authors":[{"authorName":"刘军","id":"02075187-9cbd-4e6f-8571-44e8ef4e2f67","originalAuthorName":"刘军"}],"doi":"10.3969/j.issn.1671-5381.2008.01.014","fpage":"51","id":"ee8aa00d-7ed1-4ae3-844f-e41f3c80a15b","issue":"1","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"f6b07b0b-26f6-4977-ba99-bf4d4ff07c48","keyword":"废旧橡胶","originalKeyword":"废旧橡胶"},{"id":"1b74bc22-9137-4f83-8398-53947fab725a","keyword":"回收","originalKeyword":"回收"},{"id":"7028b84d-0f96-481a-bf61-84090a78b632","keyword":"循环利用","originalKeyword":"循环利用"},{"id":"c16e2096-8fec-4acc-a6c2-c0ff3edf3b2c","keyword":"胶粉","originalKeyword":"胶粉"},{"id":"96550451-4763-4ddc-9aa9-879311c78042","keyword":"再生胶","originalKeyword":"再生胶"}],"language":"zh","publisherId":"hccllhyyy200801014","title":"废旧橡胶的回收和循环利用现状","volume":"37","year":"2008"},{"abstractinfo":"提出一种能够回收不锈钢酸洗废液中有价金属,同时能够实现废酸的循环利用的方法。该方法既重复利用了废酸,又得到副产品金属氟化物。实验室条件下模拟了酸洗废液多次循环结晶沉淀试验;分析废酸循环过程中物料平衡,并以循环1 kg 的酸洗废液为例,对其循环流程中的物质进行了物料守恒计算。在确保废酸循环前提下,计算了所需向结晶沉淀后的酸洗废液中添加的 HNO3、HF 以及 H2 O 的量,确定了循环利用酸洗废液中废酸的可能性。","authors":[{"authorName":"李秋菊","id":"fa5798f1-c104-45fa-907b-fa36f19d125e","originalAuthorName":"李秋菊"},{"authorName":"孙映","id":"350b7987-15cf-4bc5-99f2-1b627a0edf57","originalAuthorName":"孙映"},{"authorName":"张景","id":"5f4f1a78-3927-403a-b778-9e62f443900c","originalAuthorName":"张景"},{"authorName":"刘旭隆","id":"3ec1faea-aaeb-4ecc-883c-67f9bba983d0","originalAuthorName":"刘旭隆"}],"doi":"10.13228/j.boyuan.issn1006-9356.20140312","fpage":"52","id":"2442e637-577b-418a-b3e6-b7e6244eae6d","issue":"9","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"bda376a0-295a-46dc-ac77-902e4aab62d9","keyword":"不锈钢酸洗废液","originalKeyword":"不锈钢酸洗废液"},{"id":"ef666877-02fa-4a0f-824f-1bfd8b457d00","keyword":"诱导沉积","originalKeyword":"诱导沉积"},{"id":"16628f79-d6f8-41f6-bca0-0a990c1b5aaa","keyword":"废酸循环","originalKeyword":"废酸循环"},{"id":"0c5aaada-b192-497a-b5c0-308595b2a60d","keyword":"物料平衡模拟","originalKeyword":"物料平衡模拟"}],"language":"zh","publisherId":"zgyj201509013","title":"不锈钢酸洗废液循环利用试验","volume":"","year":"2015"},{"abstractinfo":"提出一种带吸收器的混合工质低温动力循环,LNG和海水分别为冷源和热源。以单位LNG输出功和可用能利用率为性能参数对循环进行计算,并对采用四氟甲烷(CF4)/丙烷(C3H8)和乙烯(C2H4)/丙烷(C3H8)新型混合工质循环与常规丙烷朗肯循环(ORC)进行比较。结果表明,本循环明显优于常规丙烷朗肯循环,单位输出功和最大可用能利用率分别比朗肯循环提高了66.3%和79.6%,最佳LNG利用温度分别为-59.6℃和-54.6℃。","authors":[{"authorName":"刘燕妮","id":"6d97faa1-12fc-4615-bed8-319597f7822b","originalAuthorName":"刘燕妮"},{"authorName":"郭开华","id":"90934090-d8c6-4e95-b92f-02c7034e3c88","originalAuthorName":"郭开华"}],"doi":"","fpage":"1860","id":"9a4c5bf2-3c72-47ad-8d4b-1098f2a5e102","issue":"11","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"71314508-a5c2-4b5a-9660-6f3d0fad0435","keyword":"液化天然气","originalKeyword":"液化天然气"},{"id":"0db08015-f3d6-4d77-bedb-fc2af5625bb9","keyword":"冷能","originalKeyword":"冷能"},{"id":"3d1040da-73fe-4e8e-b7c1-bbc868c5af77","keyword":"低温动力循环","originalKeyword":"低温动力循环"},{"id":"a23f797f-5c85-4cbe-9e4d-7d433f46c4d9","keyword":"吸收器","originalKeyword":"吸收器"},{"id":"be6d9c77-ea77-477d-9c16-30ab647a36fd","keyword":"有机朗肯循环","originalKeyword":"有机朗肯循环"}],"language":"zh","publisherId":"gcrwlxb201211007","title":"利用液化天然气冷能的低温动力循环","volume":"33","year":"2012"}],"totalpage":4529,"totalrecord":45283}