{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用显微组织分析、示差扫描量热法(DSC)和振动样品磁力计(VSM)研究了Co28Ni34Al28-xSnx(x=1,2,3)合金在应力作用下的马氏体相变行为,分析了Sn元素的含量x对合金马氏体相变以及居里点的影响.Co38Ni34Al28合金的居里点随着Sn的含量增加而升高,合金在室温下处于亚稳状态的温度范围加宽,因此在室温下施加应力更容易触发合金马氏体相变.","authors":[{"authorName":"苏佳佳","id":"38721436-a742-4635-9078-e4e33525b080","originalAuthorName":"苏佳佳"},{"authorName":"杨元政","id":"85f34255-9221-46eb-8e19-92cf83a7687d","originalAuthorName":"杨元政"},{"authorName":"谢致薇","id":"846e6f92-406a-4fce-a838-3b1d4dc618e1","originalAuthorName":"谢致薇"},{"authorName":"何玉定","id":"31315c6d-f7b3-4c34-bee6-fe14fb901793","originalAuthorName":"何玉定"},{"authorName":"陈先朝","id":"c61af700-2710-4c5e-8416-4086ef39ba26","originalAuthorName":"陈先朝"},{"authorName":"许佳雄","id":"ed729a13-6de8-46cb-b06d-e687851aa2e7","originalAuthorName":"许佳雄"}],"doi":"","fpage":"105","id":"77d62b6b-2d4d-4539-bdbb-592d0fe0173a","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8c14a803-685e-4db7-beb3-96c3eebb2be4","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"1969de08-135e-4c81-87c7-c46a14384dfd","keyword":"Co-Ni-Al-Sn合金","originalKeyword":"Co-Ni-Al-Sn合金"},{"id":"aa01f8a5-ad88-4e65-912b-824c0c83dc6f","keyword":"马氏体相变","originalKeyword":"马氏体相变"}],"language":"zh","publisherId":"cldb201412028","title":"Co-Ni-Al-Sn磁控记忆合金的应力诱发马氏体相变研究","volume":"28","year":"2014"},{"abstractinfo":"系统研究了LaMgNi3.7 M0.3(M=Ni、Al、Mn、Co、Sn、Cu)合金的组织结构和电化学性能.XRD和电子探针显微分析(EPMA)结果表明:该系列合金主相均为LaMgNi4相,其中含Mn、Cu和Co元素在LaMgNi4合金相中有一定的固溶度,LaMgNi3.7Sn0.3合金中的Sn元素主要以LaNiSn相析出;XRD全谱拟合分析表明:LaMgNi3.7Al0.3中Al元素主要占据在LaNi5相的3g位置.合金化元素在LaMgNi4相中的固溶度从大到小的顺序是Mn>Cu>Co>Al>Sn.电化学实验表明,该系列合金经1~3次循环即可活化,最大放电容量由245.2mAh/g(M=Sn)变化至293.2mAh/g(M=Co),但合金电极的循环稳定性均较差.合金电极的高倍率放电性能(HRD900%)从大到小依次为Al>Sn>Cu>Mn>Ni>Co,其中氢原子在合金中的扩散对合金电极的高倍率放电性能起主要作用.","authors":[{"authorName":"章应","id":"d14dfabc-82f2-48e9-8e2c-35b4d5a43cb2","originalAuthorName":"章应"},{"authorName":"罗永春","id":"f2c8971e-fc56-4e08-941b-9bfc7da88ee8","originalAuthorName":"罗永春"},{"authorName":"王大辉","id":"c7f941c8-7c6d-4084-a329-53317d888250","originalAuthorName":"王大辉"},{"authorName":"张法亮","id":"775f506b-7115-4edf-b965-c7472562e227","originalAuthorName":"张法亮"},{"authorName":"康家晨","id":"e5863791-d271-442f-ab79-e1f80de46298","originalAuthorName":"康家晨"},{"authorName":"闫如煦","id":"04c46f01-55b8-46cd-9f8c-da33e710a2ba","originalAuthorName":"闫如煦"}],"doi":"","fpage":"1372","id":"20c26ea7-aa50-4b13-b854-b8fcdbaf59e4","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"9535ec53-011e-4019-8c7e-6d1238a1bbc5","keyword":"贮氢合金","originalKeyword":"贮氢合金"},{"id":"0ceb83d6-9974-4eca-8765-a0f09214f631","keyword":"LaMgNi3.7M0.3合金","originalKeyword":"LaMgNi3.7M0.3合金"},{"id":"4a2c2b58-2899-41a1-a291-1e83c152afa1","keyword":"晶体结构","originalKeyword":"晶体结构"},{"id":"1698c03e-04e4-4fd0-af7e-0baea7ad8912","keyword":"Rietveld方法","originalKeyword":"Rietveld方法"},{"id":"41c72cc0-3fcd-4b04-83ba-0efc95919ecb","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"gncl200509019","title":"AB2型LaMgNi3.7M0.3(M=Ni、Al、Mn、Co、Sn、Cu)贮氢合金的晶体结构及电极性能","volume":"36","year":"2005"},{"abstractinfo":"采用电孤熔炼-真空甩带-长时间高温退火工艺制备了Ni50 Mn37 Sn13、Ni50 Mn37 Sn13 Co9和Ni50 Mn37 Sn13-Fe9三种不同状态下的Heusler合金.利用光学显微镜、X射线衍射仪、差示扫描量热仪及电子探针对所得铸锭、薄带及高温退火薄带试样进行显微组织结构分析.结果表明3种合金的铸锭试样均为枝晶结构,由马氏体、奥氏体及杂质相组成;薄带试样仅为单一奥氏体相;退火后的薄带试样又恢复到类似于铸锭试样的组织结构.另外,Co/Fe元素的加入增加了合金凝固时的成分过冷度,且没有改变合金的组织结构,只是分别占据了合金中的Mn/Ni原子位点.","authors":[{"authorName":"刘瑞蕊","id":"52090092-635a-4f63-9e65-5719d490f474","originalAuthorName":"刘瑞蕊"},{"authorName":"周啸","id":"ae1c6a88-74d7-4bb8-9884-d93910c9352e","originalAuthorName":"周啸"},{"authorName":"周海涛","id":"c19d82cf-312f-404e-836b-c42415d9bb41","originalAuthorName":"周海涛"},{"authorName":"刘克明","id":"5b6f36da-a341-41f6-a11d-12e5809c8bda","originalAuthorName":"刘克明"},{"authorName":"彭谦之","id":"b4461bf7-02a4-4278-8752-e4b71c4f0e2d","originalAuthorName":"彭谦之"},{"authorName":"彭勇","id":"8b699170-24b0-4581-8aec-a1cb4161de37","originalAuthorName":"彭勇"},{"authorName":"钟芳华","id":"86363a24-1f4d-4d52-9331-7276bd44c9ca","originalAuthorName":"钟芳华"}],"doi":"","fpage":"9","id":"20c20aa4-9470-4b90-b66f-9b58559fdcb8","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b41e208f-e964-4f9f-90e8-56beab92ee2c","keyword":"Heusler合金","originalKeyword":"Heusler合金"},{"id":"01d3dbfc-6cd7-43c8-b5c5-4209480d20e8","keyword":"铸锭","originalKeyword":"铸锭"},{"id":"628eaec5-abe8-43db-abb1-4c625f80ebd0","keyword":"薄带","originalKeyword":"薄带"},{"id":"e1ad3519-df3e-4960-817b-542903735f82","keyword":"显微组织结构","originalKeyword":"显微组织结构"}],"language":"zh","publisherId":"cldb201402003","title":"Ni50Mn37Sn13(Co/Fe)9合金的显微组织结构","volume":"28","year":"2014"},{"abstractinfo":"针对W-Ni-Mn合金难烧结致密的问题,通过在原料中添加合金元素(活泼的或低熔点的)来改善其烧结特性,提高其致密度.通过对烧结体显微组织分析,发现Al和Si元素能够还原合金中的MnO,净化粘结相;Sn,Zn能够降低合金的烧结温度.2种途径都有效地提高了该合金的致密度.","authors":[{"authorName":"解峰","id":"fc54e90b-093b-425c-ab7f-817b2b325fe9","originalAuthorName":"解峰"},{"authorName":"李云凯","id":"769980ae-7559-450d-878a-b9e125a15b82","originalAuthorName":"李云凯"},{"authorName":"李树奎","id":"3612cb11-e6f5-4150-877c-5003cded50fd","originalAuthorName":"李树奎"},{"authorName":"王富耻","id":"185b1e0e-adfe-4d3e-aa42-1c8b6435692a","originalAuthorName":"王富耻"}],"doi":"","fpage":"28","id":"425916be-9336-422a-901a-680ce8926a24","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"43b7de14-1b31-4bcc-aace-ff315b8a0099","keyword":"钨合金","originalKeyword":"钨合金"},{"id":"9120d025-fc14-47f2-b2a9-c9a79bc36c00","keyword":"合金元素","originalKeyword":"合金元素"},{"id":"c6163754-5a4b-4cfe-951c-df21ec67cc4a","keyword":"密度","originalKeyword":"密度"},{"id":"eb8e769f-b312-4641-a21c-136e89b43ad4","keyword":"液相烧结","originalKeyword":"液相烧结"}],"language":"zh","publisherId":"xyjsclygc200701007","title":"Al,Si,Sn,Zn合金元素对W-Ni-Mn烧结致密的影响","volume":"36","year":"2007"},{"abstractinfo":"运用置换原子计算层错能的热力学模型,计算了Ni-Al-W,Ni-Al-Co合金的层错能.分析了W,Co元素对Ni-6Al合金,Al元素对Ni-5W,Ni-5Co合金层错能的影响.结果表明:随温度升高,合金的层错能提高.随着W,Co质量分数提高,Ni-6Al-xW,Ni-6Al-xCo合金的层错能均提高;随元素Al质量分数的增加,Ni-5Co,Ni-5W合金层错能降低.","authors":[{"authorName":"于兴福","id":"4e0f5823-ea7d-4f63-b323-ff1fb3e5b7a2","originalAuthorName":"于兴福"},{"authorName":"田素贵","id":"0215e9a4-c095-4fc6-a257-1ead11a6faa7","originalAuthorName":"田素贵"},{"authorName":"杜洪强","id":"63d872ea-e6f4-4314-ad33-1f457a95af0a","originalAuthorName":"杜洪强"},{"authorName":"王明罡","id":"b5773df0-86b3-4dc3-89c7-e37b58061423","originalAuthorName":"王明罡"},{"authorName":"孟凡来","id":"f417c910-d814-47f7-9624-1ea000368064","originalAuthorName":"孟凡来"}],"doi":"","fpage":"2148","id":"25a91f74-8095-4274-be9b-7ce675c6088a","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"b219a227-9a99-4607-972c-ce64945bcafd","keyword":"层错能","originalKeyword":"层错能"},{"id":"e392b2d8-15ce-4f6e-a030-045ab1a02cd3","keyword":"热力学计算","originalKeyword":"热力学计算"},{"id":"a35dd0dc-9eb4-49be-9f9f-98f7ebdbbe01","keyword":"Ni-Al-W(Co)合金","originalKeyword":"Ni-Al-W(Co)合金"}],"language":"zh","publisherId":"xyjsclygc200712018","title":"元素W,Co对Ni-Al合金层错能的影响","volume":"36","year":"2007"},{"abstractinfo":"采用磁控溅射方法,在不同功率下合成Sn-Ni-Al三元合金负极材料,通过SEM对表面形貌进行表征,并装成CR2016型扣式电池进行充放电及循环伏安测试.结果表明,颗粒溅射时以线性生长;溅射功率为175 W的样品具有最优的电化学性能;样品均具有较大的首次不可逆容量损失,但随后表现出较好的循环稳定性;样品出现了分离的活性相,对充放电比容量提供最主要的贡献;样品中高比例的Ni原子对循环稳定性很有帮助,但以牺牲首次可逆容量损失为代价.","authors":[{"authorName":"黄钊文","id":"f61caf0c-071a-4c20-bf51-118e2992eb67","originalAuthorName":"黄钊文"},{"authorName":"胡社军","id":"8ec5e031-eeea-4256-9f95-b8d1c93497fb","originalAuthorName":"胡社军"},{"authorName":"侯贤华","id":"c9393b84-8f44-4bf5-9e3a-02314f8ad7a2","originalAuthorName":"侯贤华"},{"authorName":"赵灵智","id":"89cece39-3596-4aa2-b6d9-daec7c43ad28","originalAuthorName":"赵灵智"},{"authorName":"汝强","id":"5f967765-87f5-4031-a694-618afbc80575","originalAuthorName":"汝强"},{"authorName":"李伟善","id":"8ad285bd-bdb8-4f44-916d-e8015a19414a","originalAuthorName":"李伟善"},{"authorName":"彭薇","id":"83d2b8e6-6ebd-467b-a584-6044af485398","originalAuthorName":"彭薇"}],"doi":"","fpage":"324","id":"8a4d685a-7153-4931-82aa-eac44b68d638","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"2569e8d5-0dfe-489e-b412-24e44ec546c3","keyword":"Sn-Ni-Al合金","originalKeyword":"Sn-Ni-Al合金"},{"id":"c63f7656-da64-49f0-829d-1c5662e15613","keyword":"负极","originalKeyword":"负极"},{"id":"1a5a0ac1-8b0b-4b2c-a71b-bd8680ae1e6f","keyword":"锂离子电池","originalKeyword":"锂离子电池"}],"language":"zh","publisherId":"xyjsclygc2010z1078","title":"Sn-Ni-Al合金作为锂离子电池负极材料的研究","volume":"39","year":"2010"},{"abstractinfo":"介绍了Co-Ni-Al磁控形状记忆合金的晶体结构及特点,综述了近年来国内外Co-Ni-Al合金在热处理工艺、合金化以及磁控形状记忆效应方面的研究现状,指出了Co-Ni-Al磁控形状记忆合金目前存在的问题及今后发展的方向.","authors":[{"authorName":"莫康信","id":"6a65f86a-a7a0-40c7-bf79-ceda0995c4fc","originalAuthorName":"莫康信"},{"authorName":"何玉定","id":"67824fdb-9633-4126-a421-9196644a32f5","originalAuthorName":"何玉定"}],"doi":"","fpage":"97","id":"18d0f82b-0459-4949-9fd3-1ead538879dc","issue":"11","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6e21a43d-e1aa-4823-886c-7adf9bcce69b","keyword":"磁控形状记忆合金","originalKeyword":"磁控形状记忆合金"},{"id":"89e9ab71-80a9-4cdb-86fe-4c59dd7c4c07","keyword":"Co-Ni-Al","originalKeyword":"Co-Ni-Al"},{"id":"56e94e95-77ac-4985-b453-9bce0f004146","keyword":"合金化","originalKeyword":"合金化"}],"language":"zh","publisherId":"cldb201111020","title":"磁控形状记忆合金Co-Ni-Al的研究进展","volume":"25","year":"2011"},{"abstractinfo":"采用单辊快淬法制备了名义成分为Ni43Co7Mn41Sn9的高温形状记忆合金薄带,并对其微观组织结构和马氏体相变进行了研究.结果表明,薄带发生一步热弹性马氏体相变,经高温热处理后马氏体相变温度达到160℃.制备态薄带的晶粒为微米级,大小不一,介于2-18 μm之间,与块体母合金相比晶粒明显细化,且大部分晶粒沿垂直薄带表面方向生长.室温下,薄带(消除内应力后)为正方结构的非调制马氏体,马氏体变体内部由孪晶亚结构组成.热处理后薄带的相变温度有所下降,但随着热处理温度的升高基本保持不变.","authors":[{"authorName":"陈枫","id":"fbe54150-e4d3-4744-bd91-1d910279f8ab","originalAuthorName":"陈枫"},{"authorName":"苏德喜","id":"def0aaaf-59bb-4d11-b2a3-ab324fe80719","originalAuthorName":"苏德喜"},{"authorName":"佟运祥","id":"f4e34931-9477-40f7-bd06-8f3efee07591","originalAuthorName":"佟运祥"},{"authorName":"牛立群","id":"507959bc-a203-4c44-a241-8dab1aefa013","originalAuthorName":"牛立群"},{"authorName":"王海波","id":"3f59fdf8-435f-4a27-ab58-ede5de0821a5","originalAuthorName":"王海波"},{"authorName":"李莉","id":"0252a9b9-8fa4-4155-950e-de948764c657","originalAuthorName":"李莉"}],"doi":"10.3724/SP.J.1037.2013.00155","fpage":"976","id":"9c187495-66a1-43c3-bbfd-08391f1f3be5","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"059dadb0-afc0-4d57-a76b-66de111e7311","keyword":"Ni-Co-Mn-Sn","originalKeyword":"Ni-Co-Mn-Sn"},{"id":"1252317b-fe2c-4da7-8ab4-353236727755","keyword":"高温形状记忆合金","originalKeyword":"高温形状记忆合金"},{"id":"6f8530b6-642c-41a3-9200-d5f711d5b185","keyword":"薄带","originalKeyword":"薄带"},{"id":"ffe46526-9ea5-49b3-b110-e76e625d12b5","keyword":"快速凝固","originalKeyword":"快速凝固"},{"id":"c832b5fd-7e1e-413d-ba67-5af23c083700","keyword":"马氏体相变","originalKeyword":"马氏体相变"}],"language":"zh","publisherId":"jsxb201308011","title":"Ni43Co7Mn41Sn9高温形状记忆合金薄带的结构和相变","volume":"49","year":"2013"},{"abstractinfo":"本文用X射线衍射分析法研究了(Cu+1.0at.-%Ni)-Al-In和(Cu+1.0at.-%Sn)-Al-In系富铜合金相图的室温截面和500℃等温截面.结果表明,1.0at.-%Ni加入Al-Cu-In系富铜合金时,室温下A1和In在α-Cu中的固溶极限分别为10.8和2.7at.-%;在500℃时为19.0和10.5at.-%,而加入1.0at.-%Sn时,室温下Al和In在α-Cu中的固溶极限为18.7和4.9at.-%;在500℃时则为22.0和11.6at.-%,研究结果表明,少量Ni的添加,可使Al-Cu-In系富铜合金变为可热处理强化合金。","authors":[{"authorName":"庄应烘","id":"0d6b6c83-c1a3-45c2-89d6-c349a026b8a3","originalAuthorName":"庄应烘"},{"authorName":"李柏年","id":"617bd004-6924-4790-a719-bc3baa4055ef","originalAuthorName":"李柏年"}],"categoryName":"|","doi":"","fpage":"276","id":"ed9c1305-ea16-4468-a127-e06801448310","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1987_3_16","title":"(Cu+1.0at-%Ni)-Al-ln和(Cu+1.0at-%Sn)-Al-ln系富铜合金的相关系","volume":"23","year":"1987"},{"abstractinfo":"选择Zr-Al-Ni-Co合金系为研究体系,以等电子浓度和等原子尺寸为判据设计8种合金,采用吸铸法制备了直径为3 mm的合金棒,XRD结果表明了在等电子浓度面和等原子尺寸面交线上存在着一个较大范围的块体非晶合金形成区域,能够形成块体非晶合金的7种合金,具有相近的约化玻璃转变温度Trg值,最大达到0.589;它们的玻璃转变温度Tg值略有差异,且从三元Zr-Al-Co-侧至三元Zr-Al-Ni-侧,其值逐渐减小,最高Tg=713 K.将Zr-Al-Ni-Co合金系与用相同方法设计的块体非晶合金Zr-Al-Ni-Cu和Zr-Al-Ni-Fe体系进行了比较.","authors":[{"authorName":"陈伟荣","id":"46d32c64-b489-4c2a-8d6a-db160811f0a1","originalAuthorName":"陈伟荣"},{"authorName":"韩光","id":"5102eec0-4db7-49ab-9caa-c80d703cf504","originalAuthorName":"韩光"},{"authorName":"王宙","id":"cc3179ca-9173-4323-8fef-7075c604796a","originalAuthorName":"王宙"},{"authorName":"于靖华","id":"f76e8e21-7efd-45d0-af0e-df30386b620f","originalAuthorName":"于靖华"}],"doi":"","fpage":"165","id":"77048013-c8f4-494b-b94a-7b98cdaff361","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"9e64e49b-75ba-4af7-974c-f42ea6e4b543","keyword":"电子浓度","originalKeyword":"电子浓度"},{"id":"6f70821c-a13b-4223-9838-8232399431b5","keyword":"原子尺寸","originalKeyword":"原子尺寸"},{"id":"cb5638fe-dfcf-486e-a807-7c929aff4ea2","keyword":"Zr-Al-Ni-Co合金","originalKeyword":"Zr-Al-Ni-Co合金"},{"id":"8c41af6a-2fb5-4ec2-948e-7043fcc61e84","keyword":"块体非晶合金","originalKeyword":"块体非晶合金"}],"language":"zh","publisherId":"clkxygy200902005","title":"Zr-Al-Ni-Co块体非晶合金的成分设计","volume":"17","year":"2009"}],"totalpage":6732,"totalrecord":67317}