{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用静电纺丝技术与碳热还原相结合,制备了具有较高容量和较好循环性能的Sn/C无纺布纤维膜.利用扫描电镜(SEM),X射线衍射(XRD),表征Sn/C纤维的形貌和结构.样品首次循环得到较高的充放电容量,分别为1 329.8和808.6 mA·h/g.循环40圈以后,充电容量仍保持在743 mA·h/g,为第二圈充电容量的97.5%.","authors":[{"authorName":"冯圣雅","id":"aab757f5-df82-4996-a0fd-0d0d42fcc703","originalAuthorName":"冯圣雅"},{"authorName":"于湧涛","id":"c13f0bed-f9d3-49a4-9e58-04be8d85472b","originalAuthorName":"于湧涛"},{"authorName":"王瑶","id":"7c7ac092-2d97-4297-8d6f-2fe4ca520400","originalAuthorName":"王瑶"},{"authorName":"王海鹰","id":"16abe76f-4488-4181-a8c3-fe62e3462b04","originalAuthorName":"王海鹰"}],"doi":"10.13228/j.b0yuan.issn1005-8192.2015038","fpage":"35","id":"f41a2d97-f231-4fbd-a652-efe89cac826a","issue":"4","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"ea1b5d50-bd95-4d82-8b33-61322ec1d0a4","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"b50759ab-bee9-41f2-bc4d-8cfc42ad40b1","keyword":"Sn/C电极","originalKeyword":"Sn/C电极"},{"id":"cdef87f5-e276-48b4-9149-16e157529b2f","keyword":"纳米纤维","originalKeyword":"纳米纤维"}],"language":"zh","publisherId":"jsgncl201504008","title":"静电纺丝技术结合碳热还原法制备Sn/C薄膜锂电池负极材料","volume":"22","year":"2015"},{"abstractinfo":"在1300—1500℃范围内用溶解度法以及在1550℃用Ag浴等Sn活度分配平衡法分别对Fe-C-Sn溶液进行了研究,主要结果如下: (1)测得Fe液中碳的饱和溶解度〔%C〕饱与Sn含量〔%Sn〕的关系: 1300℃〔%C〕_(sat)=4.65-0.086〔%Sn〕 1400℃〔%C〕_(sat)=4.86-0.106〔%Sn〕 1550℃〔%C〕_(sat)=5.13-0.131〔%Sn〕 (2)〔%C〕_(sat)与〔%Sn〕和温度的关系: 〔%C〕_(sat)=8.41-0.101〔%Sn〕-5904(1/T) (3)按同一活度法测得碳饱和Fe液中Sn与碳的活度相互作用系数与温度的关系: ~*ε_C~(Sn)=-27170/T+20.07.~*e_C~(Sn)=-51.29/T+0.041 (4)求得炼钢温度范围内,Fe基稀溶液中Sn与碳的活度相互作用系数与温度的关系: e_C~(Sn)=-194/T+0.151.e_(Sn)~C=-1810/T+1.39 (5)用Ag浴等Sn活度分配平衡法测得1550℃ Fe液中Sn与碳的一阶、二阶活度相互作用系数: e_(Sn)~C=0.12 e_C~(Sn)=0.016 γ_(Sn)~C=0","authors":[{"authorName":"王正跃","id":"aa332f26-fcf1-4a83-bb44-9386848c7816","originalAuthorName":"王正跃"},{"authorName":"杜挺","id":"bec9b7b2-6621-49b1-b7e8-644e3b7cd460","originalAuthorName":"杜挺"},{"authorName":"王龙妹","id":"d6c42407-5e74-4599-88f6-f4721a1c0f4c","originalAuthorName":"王龙妹"}],"categoryName":"|","doi":"","fpage":"242","id":"03948287-b9f3-4e16-8f44-d84702cc5269","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"909b27af-89dd-47f2-bd40-f827a2d77447","keyword":"Fe-C-Sn","originalKeyword":"Fe-C-Sn"},{"id":"25e468bf-4edd-4a5f-929e-f3baa7eff0e6","keyword":"C-Sn interaction","originalKeyword":"C-Sn interaction"},{"id":"b5b2391d-c94c-4672-93a3-d04a1bfddb3b","keyword":"solubility method","originalKeyword":"solubility method"},{"id":"808693a1-c833-4a0c-a499-355881200996","keyword":"iso-activity method","originalKeyword":"iso-activity method"}],"language":"zh","publisherId":"0412-1961_1988_3_7","title":"Fe-C-Sn溶液中CSn的相互作用","volume":"24","year":"1988"},{"abstractinfo":"采用常规电化学方法研究了Pt/Pt与Pt和Sn配比不同的Pt-Sn/Pt电极对乙二醇(EG)的电催化氧化行为.结果表明.EG在Pt/Pt和Pt-Sn/Pt电极上均能自发氧化解离,产生强吸附中间体COad.而sn的加入.可抑制EG的自发氧化解离,且在一定范围内随着Sn含量的逐渐增加(Sn/Pt从0.25增加至0.67),EG在Pt-Sn/Pt电极上自发氧化解离所产生的CO吸附量逐渐减少,Pt-Sn/Pt电极对EG电催化氧化的活化能逐渐降低(从44.21降至32.11 kJ/mol).与Pt/Pt电极相比,Pt-Sn/Pt(Sn/PI=0.67)电极对EG电催化氧化的活性得到明显提高.,ad>.而sn的加入.可抑制EG的自发氧化解离,且在一定范围内随着Sn含量的逐渐增加(Sn/Pt从0.25增加至0.67),EG在Pt-Sn/Pt电极上自发氧化解离所产生的CO吸附量逐渐减少,Pt-Sn/Pt电极对EG电催化氧化的活化能逐渐降低(从44.21降至32.11 kJ/mol).与Pt/Pt电极相比,Pt-Sn/Pt(Sn/PI=0.67)电极对EG电催化氧化的活性得到明显提高.\n","authors":[{"authorName":"王国富","id":"e3aab3dd-33af-47fd-b2eb-b7093a1d8df4","originalAuthorName":"王国富"},{"authorName":"刘跃龙","id":"6ce2f6ba-2ace-4ffb-af37-a8aa40515794","originalAuthorName":"刘跃龙"},{"authorName":"丁月敏","id":"639ac8ed-f2a8-41cb-8b4e-c6a480968366","originalAuthorName":"丁月敏"},{"authorName":"饶贵仕","id":"c6803a99-62ad-420b-8e00-16d9d88f4311","originalAuthorName":"饶贵仕"},{"authorName":"吴志祥","id":"f09c45ea-0f27-41e2-9b27-fd5a3442a1e6","originalAuthorName":"吴志祥"},{"authorName":"易飞","id":"53906c65-987a-49c9-95bb-d1179061feb4","originalAuthorName":"易飞"},{"authorName":"钟起玲","id":"de23785c-e436-48eb-acc5-7a12825e0a1c","originalAuthorName":"钟起玲"},{"authorName":"任斌","id":"640b8669-1e68-4a2b-9868-9116ed649d70","originalAuthorName":"任斌"},{"authorName":"田中群","id":"010d720a-7e60-4918-bcf0-827cb6033427","originalAuthorName":"田中群"}],"doi":"10.3969/j.issn.1000-0518.2008.07.012","fpage":"810","id":"029e0e10-b3ee-4bf0-8696-f97fcedad913","issue":"7","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"3c8ea371-f513-437a-96aa-fb53149b11d5","keyword":"Pt-Sn/Pt电极","originalKeyword":"Pt-Sn/Pt电极"},{"id":"8c356698-de7f-43ec-b462-58300a2e0e5d","keyword":"乙二醇","originalKeyword":"乙二醇"},{"id":"0cb42b36-e05f-425c-905f-71f4e74ace35","keyword":"自发解离","originalKeyword":"自发解离"},{"id":"2570dc5c-9195-46bc-be1b-290bd449a4af","keyword":"电氧化","originalKeyword":"电氧化"}],"language":"zh","publisherId":"yyhx200807012","title":"Pt-Sn/Pt电极对乙二醇的电催化氧化","volume":"25","year":"2008"},{"abstractinfo":"在乙二醇共还原H2PtCl6和SnCl2的过程中加入Ni(NO3)2作为助剂制备了PtSn/C-Ni催化剂. 程序升温还原实验检测到该催化剂中存在Sn(Ⅱ)/Sn(Ⅳ)氧化还原电对. 线性扫描、单电池性能测试和CO溶出实验表明,提高催化剂中Sn(Ⅱ)/Sn(Ⅳ)的比值能显著提高催化剂的乙醇电化学氧化活性和抗CO中毒能力. 催化剂电催化活性提高的原因可能是Sn(Ⅱ)/Sn(Ⅳ)电对加快了(OH)ads 物种在催化剂中的传递速率,促进了乙醇电化学氧化过程中产生的类CO中间物种在Pt表面的氧化.","authors":[{"authorName":"朱明远","id":"7dadc04a-5535-46e0-b3ed-714f8e663ea7","originalAuthorName":"朱明远"},{"authorName":"孙公权","id":"8c94eccd-514a-4c64-b557-8e40153d64c0","originalAuthorName":"孙公权"},{"authorName":"李焕巧","id":"2488bc2e-cb3d-48fb-9bd3-cee6ca92bc97","originalAuthorName":"李焕巧"},{"authorName":"曹雷","id":"8a8677ba-d69f-4845-af60-4ecbaf990066","originalAuthorName":"曹雷"},{"authorName":"辛勤","id":"b1014c91-43dc-409e-8ba4-26d0b30e985b","originalAuthorName":"辛勤"}],"doi":"","fpage":"765","id":"529269ca-6fdd-41ff-84ad-bdf9fd9cb9d7","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"5221bd42-c7d9-4b3b-994a-64698539dfc6","keyword":"铂","originalKeyword":"铂"},{"id":"3bcdf830-d948-41e8-a21d-4c7bd1853855","keyword":"锡","originalKeyword":"锡"},{"id":"3375e306-31ba-4cd5-9d8c-cfbfa8f5712d","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"00fd05ee-0732-4567-807b-fff90f488075","keyword":"直接乙醇燃料电池","originalKeyword":"直接乙醇燃料电池"},{"id":"ed4f32d5-5c34-4a1b-8f0f-18563479c2fe","keyword":"乙醇电化学氧化","originalKeyword":"乙醇电化学氧化"},{"id":"9b0ff8d0-ce59-4eb2-9d70-3e0ac65def49","keyword":"锡氧化还原电对","originalKeyword":"锡氧化还原电对"}],"language":"zh","publisherId":"cuihuaxb200808017","title":"Sn(Ⅱ)/Sn(Ⅳ)对PtSn/C乙醇电化学氧化活性的影响","volume":"29","year":"2008"},{"abstractinfo":"采用化学镀制备了Pd/Sn石墨电极, 用扫描电子显微镜观察了改性后石墨电极试样的微观组织, 用能谱仪确定石墨电极的表面成分, 用循环伏安法及电化学阻抗研究了石墨电极的甲醇氧化电催化性能。结果表明, Pd/Sn以球状颗粒存在于石墨电极表面, 没有出现明显的团聚。峰电流密度与电势扫描速率平方根呈线性关系, 电极上甲醇氧化和中间产物氧化反应速率都随着测试电位的升高而加快。","authors":[{"authorName":"楼白杨陈茂军杨京徐斌","id":"59ef11ad-0b1f-44da-8a80-33c270c5e029","originalAuthorName":"楼白杨陈茂军杨京徐斌"}],"categoryName":"|","doi":"","fpage":"333","id":"ee84a604-785e-42b6-b083-b8b2c98cadf4","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"3ebb498d-2b1e-4b64-a484-538cf1c7e772","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"7ac78fc6-9cd1-41a2-8573-038f193d2c2a","keyword":"alkaline medium","originalKeyword":"alkaline medium"},{"id":"c1856e6c-d68a-478e-9fec-b8fbf9c3899d","keyword":" Pd/Sn","originalKeyword":" Pd/Sn"},{"id":"c6eaaa85-6da6-42d4-9cbd-b04fcf6d2783","keyword":" cyclic voltammetry","originalKeyword":" cyclic voltammetry"},{"id":"af8de009-53b3-4e2c-9d5c-f62406b5ce68","keyword":" AC impedance","originalKeyword":" AC impedance"}],"language":"zh","publisherId":"1005-3093_2011_3_17","title":"碱性介质中Pd/Sn石墨电极的电催化性能","volume":"25","year":"2011"},{"abstractinfo":"采用化学镀制备了Pd/Sn石墨电极,用扫描电子显微镜观察了改性后石墨电极试样的微观组织,用能谱仪确定石墨电极的表面成分,用循环伏安法及电化学阻抗研究了石墨电极的甲醇氧化电催化性能.结果表明,Pd/Sn以球状颗粒存在于石墨电极表面,没有出现明显的团聚.峰电流密度与电势扫描速率平方根呈线性关系,电极上甲醇氧化和中间产物氧化反应速率都随着测试电位的升高而加快.","authors":[{"authorName":"楼白杨","id":"43582b57-dff9-47f0-a4a3-8485632489f7","originalAuthorName":"楼白杨"},{"authorName":"巫少龙","id":"32a447e9-e258-429c-b17f-c5d85917fccb","originalAuthorName":"巫少龙"},{"authorName":"杨京","id":"c26ad70b-40f0-4c5e-b48f-4b06a2d4695f","originalAuthorName":"杨京"},{"authorName":"徐斌","id":"dc420448-13c9-4433-b8a0-a289b21636a6","originalAuthorName":"徐斌"}],"doi":"","fpage":"333","id":"f8bf3fc1-7b77-4b26-b7d5-9c4dc269d32c","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"83ac4306-3010-46a3-a530-764d5b3a6c06","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"2312a530-bf50-4231-910f-7a3a82ed0f43","keyword":"碱性介质","originalKeyword":"碱性介质"},{"id":"975630ce-7d6c-4657-a6c0-49a45e983646","keyword":"Pd/Sn","originalKeyword":"Pd/Sn"},{"id":"4dfb2d86-767c-48a3-867f-b870b3edaa2c","keyword":"循环伏安法","originalKeyword":"循环伏安法"},{"id":"8b32ae04-90c6-450d-8d0a-07c6c1bbd1ed","keyword":"交流阻抗","originalKeyword":"交流阻抗"}],"language":"zh","publisherId":"clyjxb201103020","title":"碱性介质中Pd/Sn石墨电极的电催化性能","volume":"25","year":"2011"},{"abstractinfo":"采用模板-电沉积法制备锂离子电池Sn-Co-C微孔负极。首先,采用聚合法制备PS球乳液。然后,再以柠檬酸、EDTA为络合剂,CoCl2、SnCl4为主盐,添加甲酸和PS球乳液的电解液中,电沉积制备Sn-Co-C微孔复合电极材料。随后采用EDS、XRD和SEM分析其元素成分、晶体结构和表面形貌。最后采用恒流充放电和交流阻抗测试其电化学性能。结果表明,电极表面的微孔可以缓解锂电池充放电过程中产生的体积变化所导致的活性物质脱落,提高循环性能和寿命。Sn-Co-C负极组成的电池首次充放电比容量分别为705.4和1105 mA.h.g-1,循环126次后充放电比容量分别为393.3和403.2 mA.h.g-1。","authors":[{"authorName":"东栋","id":"02f223fd-05c4-46d2-a807-9fd67df17395","originalAuthorName":"东栋"},{"authorName":"于维平","id":"55c24dd6-7ac6-44d3-be85-80879895ac42","originalAuthorName":"于维平"}],"doi":"","fpage":"6","id":"e5471536-ea31-4bfd-adcd-a89ceaebf78f","issue":"8","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"37b8ce9b-a200-4ce3-a92a-9748add87e72","keyword":"微孔","originalKeyword":"微孔"},{"id":"78e90b33-76ed-4dcb-8700-79dc29c2d952","keyword":"Sn-Co-C复合电极","originalKeyword":"Sn-Co-C复合电极"},{"id":"b969e098-023a-4343-ab8d-dff756be448c","keyword":"锂电池","originalKeyword":"锂电池"}],"language":"zh","publisherId":"jsrclxb201108002","title":"锂离子电池微孔Sn-Co-C负极的制备及其性能","volume":"32","year":"2011"},{"abstractinfo":"用电沉积方法在Cu集流体上分别制备出用于锂离子电池负极材料的密集细粒状(<0.5 μm)和分散粗粒状(≈3 μm)两种Sn薄膜电极.用X射线衍射、扫描电镜、循环伏安及充、放电实验研究比较了两电极的组织与性能.结果表明,在氟硼酸盐溶液中使用以醛类为主的复合添加剂,在静止条件下可制得细粒Sn薄膜电极,在搅拌条件下可制得粗粒Sn薄膜电极;细粒Sn薄膜电极比粗粒Sn薄膜电极具有较优的初始嵌锂容量和循环稳定性:细粒Sn薄膜电极首次放电比容量达到787 mA·h/g,40次循环时放电比容量仍保持在630 mA·h/g;而粗粒Sn薄膜电极首次放电比容量只有576 mA·h/g,至20次循环放电比容量降至150 mA·h/g.","authors":[{"authorName":"李昌明","id":"64f1543d-e9e2-4291-8036-acb1ace350c9","originalAuthorName":"李昌明"},{"authorName":"黄启明","id":"ebb5ce77-18d8-4efb-886e-b788393ddcfe","originalAuthorName":"黄启明"},{"authorName":"张仁元","id":"7856a619-133b-4fa7-8388-7c1e3adc10a0","originalAuthorName":"张仁元"},{"authorName":"李伟善","id":"db507bc8-bb56-4e78-994c-6adebdc4236f","originalAuthorName":"李伟善"},{"authorName":"赵灵智","id":"0f992737-d5c0-4899-8775-71be7e94533c","originalAuthorName":"赵灵智"},{"authorName":"胡社军","id":"c6acae96-d229-44d7-bbfc-485195ee11da","originalAuthorName":"胡社军"}],"doi":"10.3321/j.issn:0412-1961.2007.05.013","fpage":"515","id":"8e72efc8-4935-4c37-b901-86bfd5fa38d7","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1d5a8577-80bd-47e5-8f8f-b3aafb7a333d","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"4e417f69-11fb-434d-84c1-e3e18f0d191a","keyword":"Sn","originalKeyword":"Sn"},{"id":"7453f763-0d4b-47fd-ba2b-c0125029f320","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"3014fd12-87af-43c0-9763-1ce164297fc0","keyword":"负极材料","originalKeyword":"负极材料"}],"language":"zh","publisherId":"jsxb200705013","title":"电沉积制备的两种形貌Sn薄膜锂离子嵌入电极性能的比较","volume":"43","year":"2007"},{"abstractinfo":"The microstructure of a laser-melted Fe-4% C-10% Sn alloy has been studied.A non-crystalline phase was found in the upper part of the laser-melted zone:At the bottom of the melted zone,however,the microcrystalline zone which consists of α-Fe and a bet phase was observed.Fine twinning martensite exists in the other area of the melted zone.","authors":[{"authorName":"ZHANG Jingguo ZHANG Xiaomin LIN Yijian Shanghai Iron and Steel Research Institute","id":"b864f247-64e7-4a53-b715-41918297cb2c","originalAuthorName":"ZHANG Jingguo ZHANG Xiaomin LIN Yijian Shanghai Iron and Steel Research Institute"},{"authorName":"Shanghai","id":"85bf281c-e811-4b2c-85e0-8fb656364162","originalAuthorName":"Shanghai"},{"authorName":"ChinaKE Jun (T.Ko) University of Iron and Steel Technology Beijing","id":"5c7d7ded-fc69-43b5-be9c-1321ef7da224","originalAuthorName":"ChinaKE Jun (T.Ko) University of Iron and Steel Technology Beijing"},{"authorName":"Beijing","id":"d4ce0076-55a3-4928-b484-8bff5a7853b8","originalAuthorName":"Beijing"},{"authorName":"ChinaCHEN Lanying Shanghai Institute of Optic and Fine Mechanics","id":"35fea346-73c9-45bf-b6f7-08ca7616d97f","originalAuthorName":"ChinaCHEN Lanying Shanghai Institute of Optic and Fine Mechanics"},{"authorName":"Academic Sinica","id":"050220c5-ee58-4deb-a5f2-58d7064805e7","originalAuthorName":"Academic Sinica"},{"authorName":"Shanghai","id":"fbf05704-231f-43b2-9b94-1d45db3590e9","originalAuthorName":"Shanghai"},{"authorName":"China Senior Engineer","id":"1e1d4abe-cd45-4fa7-9333-dc041ea74761","originalAuthorName":"China Senior Engineer"},{"authorName":"Shanghai Iron and Steel Research Institute","id":"8c347c97-2ba4-485c-a742-9bc822c3bd21","originalAuthorName":"Shanghai Iron and Steel Research Institute"},{"authorName":"Shanghai 200940","id":"15da4277-7eaa-4927-b712-276ace10ae66","originalAuthorName":"Shanghai 200940"},{"authorName":"China","id":"491e694c-2385-45a1-98d2-5b313b805f03","originalAuthorName":"China"}],"categoryName":"|","doi":"","fpage":"383","id":"3b7ce26a-caee-40db-bbe0-68430bef9b55","issue":"5","journal":{"abbrevTitle":"JSXBYWB","coverImgSrc":"journal/img/cover/amse.jpg","id":"49","issnPpub":"1006-7191","publisherId":"JSXBYWB","title":"金属学报(英文版)"},"keywords":[{"id":"d037d6f4-cd74-4f81-b8ac-4032a7c8ccea","keyword":"Fe-C-Sn alloy","originalKeyword":"Fe-C-Sn alloy"},{"id":"3041486d-dfb0-4a56-b65d-544fa79c294f","keyword":"null","originalKeyword":"null"},{"id":"5248dd15-0c57-4050-96e7-98e0bb3a8912","keyword":"null","originalKeyword":"null"},{"id":"8e608962-4228-467a-99cd-98d86c0cd2fa","keyword":"null","originalKeyword":"null"}],"language":"en","publisherId":"1006-7191_1989_5_6","title":"MICROSTRUCTURE OF A RAPIDLY SOLIDIFIED Fe-C-Sn ALLOY","volume":"2","year":"1989"},{"abstractinfo":"研究了经激光表面熔化处理的Fe-4%C-10%Sn合金的显微组织,发现在激光熔化区上部存在一种非晶相,而在其底部存在由α-Fe和一种bct相组成的显微组织,在熔化区其它区域存在含细小孪晶的马氏体。","authors":[{"authorName":"章靖国","id":"4231f07a-207b-4e6a-8569-cd2b8d4393bb","originalAuthorName":"章靖国"},{"authorName":"张小岷","id":"b22c8865-c7cc-4105-9f5b-e53d6d9c0d52","originalAuthorName":"张小岷"},{"authorName":"林一坚","id":"66d94a1e-dd06-4e77-afe2-dbcbf90c50aa","originalAuthorName":"林一坚"},{"authorName":"柯俊","id":"b3805496-fa71-4dd6-9d17-a8a762508245","originalAuthorName":"柯俊"},{"authorName":"陈兰英","id":"60b37300-65bf-417e-9d15-4b56ea99d36f","originalAuthorName":"陈兰英"}],"categoryName":"|","doi":"","fpage":"79","id":"52b46b0a-7b37-4612-b9ca-cfa10214b759","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"d7b67920-117e-469a-9bd0-0b1e7f53a643","keyword":"Fe-C-Sn合金","originalKeyword":"Fe-C-Sn合金"},{"id":"ba43a54e-3696-432c-a44e-04573df97955","keyword":"rapid solidification","originalKeyword":"rapid solidification"},{"id":"936998e9-ba77-4ded-b7c9-bb0530b23047","keyword":"laser","originalKeyword":"laser"},{"id":"1940b0bd-2ef5-4d71-a0e6-c6fd0cc20ae2","keyword":"microstruture","originalKeyword":"microstruture"}],"language":"zh","publisherId":"0412-1961_1989_2_12","title":"快速凝固Fe-C-Sn合金的显微组织","volume":"25","year":"1989"}],"totalpage":3051,"totalrecord":30504}