{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文分析了中国散裂中子源(CSNS)退耦合窄化液氢慢化器(Decoupled Posioned Hydrogen Moderator,DPHM)热沉积分布,对慢化工质、窄化片和容器进行了流固共轭传热三维数值分析.针对DPHM热源的不规则分布,提出了适合DPHM的中子物理-热工热源耦合方法,考察了不同流量对慢化器的慢化工质-液氢的平均温度的影响.计算结果表明:中子物理-热工耦合方法能更真实地在热分析计算中反映CSNS的热源分布,液氢的温度随流量增加呈现非线性降低,在选定流量下液氢的温度分布符合中子物理要求.本文的分析结果为中子物理、慢化器结构以及低温系统的设计和优化提供理论依据.","authors":[{"authorName":"童剑飞","id":"c21754b4-9f7d-4e75-be0f-4ae5bf62cbe1","originalAuthorName":"童剑飞"},{"authorName":"王松林","id":"c8b99e10-5089-4e89-88cf-ce2f8f0d4cb1","originalAuthorName":"王松林"},{"authorName":"殷雯","id":"c2896d38-1e4d-47cb-b7cd-2a63cef25125","originalAuthorName":"殷雯"},{"authorName":"陆友莲","id":"fbe6dbc0-8eed-41a6-8f09-e8ffef7c6cbb","originalAuthorName":"陆友莲"},{"authorName":"于全芝","id":"1e49bda2-3595-4546-8181-1ab9f8920e1c","originalAuthorName":"于全芝"},{"authorName":"胡春明","id":"0707b4ab-6811-41eb-a2ea-7627e47c258a","originalAuthorName":"胡春明"},{"authorName":"余朝举","id":"8f6796e2-59f0-4589-a017-900306a7dcd3","originalAuthorName":"余朝举"},{"authorName":"杜文婷","id":"18fd8302-6566-42cc-8ec4-f773e0966f1a","originalAuthorName":"杜文婷"},{"authorName":"姚从菊","id":"42ae8b3c-49e1-41d2-b9aa-3a42fc356dbd","originalAuthorName":"姚从菊"}],"doi":"","fpage":"905","id":"ad35c60b-56a3-47de-b9bc-e0e9cebf241f","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e7b51578-6ae9-4908-96a7-d0112e980c72","keyword":"散裂中子源","originalKeyword":"散裂中子源"},{"id":"f9a4ba60-d4f4-4ead-a5a2-45c31c9512f3","keyword":"退耦合窄化液氢慢化器","originalKeyword":"退耦合窄化液氢慢化器"},{"id":"f3e92d6c-adf7-46fe-bc82-5a185481a209","keyword":"三维非均匀热源","originalKeyword":"三维非均匀热源"},{"id":"b988e7e5-670c-4600-ba14-7a53e231bce3","keyword":"温度场","originalKeyword":"温度场"},{"id":"eabd602d-c3f1-463f-b9ae-4483bc9e875b","keyword":"中子物理-热工耦合","originalKeyword":"中子物理-热工耦合"}],"language":"zh","publisherId":"gcrwlxb201305025","title":"CSNS退耦合液氢慢化器中子物理-热工耦合模拟","volume":"34","year":"2013"},{"abstractinfo":"用多箔活化法测定了由Am-Be中子源慢化屏蔽系统构成的中子活化在线分析系统样品处的中子能谱.根据待测场点的中子注量率水平,选用了5种非裂变核材料箔,其中4种是中能区和热区的,1种是快区的,给出了各箔片的特性参数.通过在待测场点对箔片进行辐照,并测量其生成放射性核的γ放射性,计算出了各箔片的活化率.运用SAND-II和MSIT迭代方法,解出了待测场点的中子能谱.详细分析了数据处理过程中群截面的加工处理以及由于自屏蔽效应引起的群截面修正问题;研究了影响解谱精度的主要因素;对解谱结果作了一定的分析讨论;并用蒙特卡罗(MC)方法对最后的中子能谱做了不确定度分析.","authors":[{"authorName":"王松林","id":"0d08dc5b-9434-4376-a8d0-8be8930b1dfe","originalAuthorName":"王松林"},{"authorName":"孔祥忠","id":"f2c85d4c-7141-4026-87a0-d0a5516e8e78","originalAuthorName":"孔祥忠"},{"authorName":"邓勇军","id":"64e145d1-736f-4533-91b1-e67a0caee43b","originalAuthorName":"邓勇军"},{"authorName":"拓飞","id":"295a5459-3386-4496-ac9f-3c1652823e91","originalAuthorName":"拓飞"},{"authorName":"王琦","id":"10bd6743-c4c9-4385-b18d-68f2dcb84ecc","originalAuthorName":"王琦"},{"authorName":"位金锋","id":"7c1ef790-9911-4484-a5ca-20fbc1d844ac","originalAuthorName":"位金锋"},{"authorName":"李永明","id":"ab737668-8dd2-4185-99c7-3d27d74e82c4","originalAuthorName":"李永明"}],"doi":"","fpage":"27","id":"3336c452-100b-4d38-9cc8-3de7a6334ee8","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"4206bb65-d502-4d7a-976f-9341a030869a","keyword":"中子能谱","originalKeyword":"中子能谱"},{"id":"f064a007-f47e-4fec-acc2-f0ec689d3fb0","keyword":"SAND-II迭代法","originalKeyword":"SAND-II迭代法"},{"id":"9d2eeaba-b87e-4795-8e6c-185127f8954e","keyword":"群截面","originalKeyword":"群截面"}],"language":"zh","publisherId":"yzhwlpl200901006","title":"活化法测量中子活化在线分析系统样品处的中子能谱","volume":"26","year":"2009"},{"abstractinfo":"铬酸钇与铬酸镧基固体氧化物燃料电池陶瓷连接材料相比具有更高的化学稳定性,但是却难以在空气中致密化烧结.本文利用微波辅助的溶胶-凝胶工艺制备Y0.8Sr0.2CrO3-δ超细粉体(粒径30~50nm),并掺入少量的CaF2作为烧结助剂,在1400℃空气气氛下获得了高致密度的烧结体.当CaF2掺入量达到9%(质量分数)时,样品致密度达到97.6%,仍然遵从小极子导电机理,850℃时电导率为2.7Scm-1,完全能够满足中温燃料电池连接材料的使用要求.","authors":[{"authorName":"王松林","id":"912a3193-3faa-454c-90a5-230c5ad08f1d","originalAuthorName":"王松林"},{"authorName":"王泾文","id":"eb3bf9f8-d253-4d72-b5ae-f7b7affa13ea","originalAuthorName":"王泾文"},{"authorName":"刘晓雪","id":"0d89cb59-3c62-44a7-8dc8-2562a3e6d5e3","originalAuthorName":"刘晓雪"},{"authorName":"孟广耀","id":"10ccbfa9-a88b-4e58-891c-1132f4dd7a49","originalAuthorName":"孟广耀"}],"doi":"","fpage":"876","id":"018cee5f-0338-486a-b185-3c60abfa6a37","issue":"6","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"73369f94-9b4a-428a-9ebe-e92e7f35ce08","keyword":"铬酸钇","originalKeyword":"铬酸钇"},{"id":"fd04fbc9-7b9c-49e6-872a-0c2e690af547","keyword":"烧结","originalKeyword":"烧结"},{"id":"ca84ab16-1409-45f2-908d-6b1909acde66","keyword":"溶胶-凝胶工艺","originalKeyword":"溶胶-凝胶工艺"},{"id":"b4c9126e-7157-4a19-b335-da9989a1d254","keyword":"连接材料","originalKeyword":"连接材料"},{"id":"05d007b6-7f2c-4534-a6b1-46bffc74f149","keyword":"SOFC","originalKeyword":"SOFC"}],"language":"zh","publisherId":"clkxygc201006017","title":"Y0.8Sr0.2CrO3-δ超细粉体制备及其低温致密化烧结","volume":"28","year":"2010"},{"abstractinfo":"以高岭土、滑石和氧化铝为主要原料采用生料一次烧结工艺制备低膨胀堇青石蜂窝陶瓷,研究了碱金属氧化物K2O和Na2O(用R2O表示)含量对试样热膨胀系数、显气孔率和抗压强度的影响,并利用X射线衍射仪、扫描电镜分析了试样的物相组成和断面形貌.研究表明,R2O含量在0.22%以下时制备的堇青石蜂窝陶瓷的热膨胀系数可达0.56×10 -6/℃,从0.22%增加到0.52%时,热膨胀系数增加到1.58×10-6/℃,显气孔率逐渐降低,而抗压强度增大;R2O含量为0.12%的基础配方试样主要由定向排列的片状堇青石晶粒构成,呈疏松多孔结构,气孔小,随着R2O含量的增加,气孔尺寸变大而数量减少.","authors":[{"authorName":"李月丽","id":"110142c1-419d-41f4-afc3-00906ffc9501","originalAuthorName":"李月丽"},{"authorName":"刘建","id":"4e2b57d3-f762-4a53-9efe-e2a65d112d29","originalAuthorName":"刘建"},{"authorName":"胡华","id":"4c07c9a1-e4e8-4f97-9248-2755c36bab65","originalAuthorName":"胡华"},{"authorName":"彭红","id":"ae422961-e8e0-48b7-8636-9535c65fa7b6","originalAuthorName":"彭红"},{"authorName":"王松林","id":"1ccb130f-f053-4fb4-a544-c5ef97adcb44","originalAuthorName":"王松林"}],"doi":"","fpage":"183","id":"0c2ba874-8076-48c3-83a7-49150194c606","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"e91fe2c1-1d33-4a72-a110-6df2d77a735f","keyword":"堇青石","originalKeyword":"堇青石"},{"id":"fc086d53-bdef-4511-b7b5-9967bbdd9ef3","keyword":"碱金属氧化物","originalKeyword":"碱金属氧化物"},{"id":"e334b67b-af38-4a3f-b261-cae45c00c435","keyword":"热膨胀系数","originalKeyword":"热膨胀系数"},{"id":"e7588988-64cf-4d12-a193-be2a490b9fe1","keyword":"显气孔率","originalKeyword":"显气孔率"},{"id":"3c998c65-b774-45d3-97dd-f72ebc917b4d","keyword":"抗压强度","originalKeyword":"抗压强度"}],"language":"zh","publisherId":"rgjtxb98201201036","title":"钾钠含量对堇青石蜂窝陶瓷性能的影响","volume":"41","year":"2012"},{"abstractinfo":"为了探讨激光重熔对等离子喷涂常规和纳米热障涂层(TBCs)的影响,采用等离子喷涂工艺在γ—TiAl合金表面制备了常规和纳米ZrO2—7%Y2O3TBCs,并对其进行激光重熔处理,研究了等离子喷涂常规TBCs、激光重熔一等离子喷涂常规TBCs、等离子喷涂纳米TBCs及激光重熔.等离子喷涂纳米TBCs4种涂层在850℃=下的抗热震性能。结果表明:4种TBCs热震失效次数依次为73,118,146,163次,相应的热震破坏形式分别为整体剥落、局部剥落、边角剥落和局部剥落;纳米结构有利于提高涂层的抗热震性能;激光重熔在一定程度上改善了等离子喷涂层的抗热震性能。","authors":[{"authorName":"王东生","id":"742d693b-d770-4e44-a10e-bcd4ad33c951","originalAuthorName":"王东生"},{"authorName":"田宗军","id":"b5b72a62-1bbe-4222-b1fb-f411be25c5f4","originalAuthorName":"田宗军"},{"authorName":"王松林","id":"54ab2250-6682-4127-9955-f078077608a7","originalAuthorName":"王松林"},{"authorName":"沈理达","id":"055273e9-2059-4fe3-b207-b4d0b4ce5901","originalAuthorName":"沈理达"},{"authorName":"黄因慧","id":"093bf14d-2707-43cc-8cb9-9e0a8edc65dc","originalAuthorName":"黄因慧"}],"doi":"","fpage":"54","id":"0c9e94cc-73c4-4a2f-8bb0-88802d884b11","issue":"5","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"c9963052-7380-4886-a979-bd4185d49349","keyword":"激光重熔","originalKeyword":"激光重熔"},{"id":"b25dcee1-1f9b-4b77-9148-fe32919f5b18","keyword":"ZrO2-7%Y2O3热障涂层","originalKeyword":"ZrO2-7%Y2O3热障涂层"},{"id":"d5a4f353-b40a-4680-8af9-76fab0b7570e","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"8194713e-2725-4e5e-a182-6d998a3467c7","keyword":"抗热震性能","originalKeyword":"抗热震性能"}],"language":"zh","publisherId":"clbh201205021","title":"常规和纳米ZrO2-7%Y2O3等离子喷涂热障层及其激光重熔后的抗热震性能","volume":"45","year":"2012"},{"abstractinfo":"将SiC颗粒增强铝基复合材料的制备技术与泡沫铝熔体发泡技术相结合,探索了制备SiC颗粒增强泡沫铝基复合材料的工艺方法.讨论了SiC颗粒与铝基体之间存在的润湿性,界面反应以及SiC颗粒在熔体中沉降等问题,通过选择合适的合金成分,对SiC颗粒进行预处理,采用特定的搅拌和发泡等一系列工艺方案成功地予以解决.在熔体发泡过程中,通过严格控制发泡温度、搅拌速度和搅拌时间等工艺参数,制得了孔隙率基本可调,SiC颗粒和孔洞分布均匀的泡沫铝样品.","authors":[{"authorName":"王松林","id":"227cfa4b-086d-4b6a-a9fc-deecc2f32eb5","originalAuthorName":"王松林"},{"authorName":"凤仪","id":"8fb3e057-21fb-4ef3-a3b2-3bd1076fdf54","originalAuthorName":"凤仪"},{"authorName":"徐屹","id":"e7158101-02c1-4e26-b04a-9b9227680790","originalAuthorName":"徐屹"},{"authorName":"张学斌","id":"4a621bf2-898a-4fad-a6b6-0a3ebce150ab","originalAuthorName":"张学斌"},{"authorName":"沈剑","id":"9f1cde9e-6300-4b01-a35d-071e75468f21","originalAuthorName":"沈剑"}],"doi":"10.3969/j.issn.1005-8192.2005.06.006","fpage":"22","id":"124d94a5-9c36-41db-971b-0041e878c981","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"523b1654-ddef-445d-8813-9046ceaa29b5","keyword":"SiC","originalKeyword":"SiC"},{"id":"fdc58616-d0b2-4ef3-96b8-6164a5781315","keyword":"泡沫铝","originalKeyword":"泡沫铝"},{"id":"17c59f85-9c7d-437f-bd1f-3615af89ff07","keyword":"熔体发泡","originalKeyword":"熔体发泡"},{"id":"79560c49-293a-468c-b69a-565d0d4b0afd","keyword":"制备工艺","originalKeyword":"制备工艺"}],"language":"zh","publisherId":"jsgncl200506006","title":"SiCP增强泡沫铝基复合材料的制备工艺研究","volume":"12","year":"2005"},{"abstractinfo":"为了深入研究等离子喷涂纳米Al2O3-13 %TiO2(质量分数)工艺参数与涂层性能之间的关系,采用正交试验设计法,针对等离子喷涂过程中喷涂距离、喷涂电流、主气压力及辅气压力等4个主要参数,选用L9(34)正交表,以涂层结合强度为指标开展制备工艺参数的优化.结果表明,影响涂层结合强度的因素主次顺序是喷涂电流、喷涂距离、主气压力、辅气压力;等离子喷涂纳米Al2O3-13%TiO2最佳工艺参数为:喷涂距离110mm,喷涂电流870A,主气压力0.31MPa,辅气压力0.97MPa,优化工艺喷涂的涂层结合强度达到31.5MPa.","authors":[{"authorName":"王东生","id":"ed37936f-3eda-4421-83ee-60ff636f4feb","originalAuthorName":"王东生"},{"authorName":"田宗军","id":"955d662f-b004-448c-99a0-746d4dd0b1b5","originalAuthorName":"田宗军"},{"authorName":"王松林","id":"a06e7651-1f80-4254-85b1-87fc206ed106","originalAuthorName":"王松林"},{"authorName":"杨斌","id":"4af41e65-4c2c-418c-9896-aae6fea77551","originalAuthorName":"杨斌"},{"authorName":"沈理达","id":"94681688-ffe8-4333-abeb-dfed2fdfb6ab","originalAuthorName":"沈理达"},{"authorName":"黄因慧","id":"e329d181-1688-4076-946e-62fbded1d445","originalAuthorName":"黄因慧"}],"doi":"","fpage":"80","id":"2b56f7dd-c013-40a2-8dcb-cf1150491405","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5b2fa152-6efa-43b6-82af-c8675de495ac","keyword":"等离子喷涂","originalKeyword":"等离子喷涂"},{"id":"fd2e0413-01ee-4a58-8aa8-07ad0fdcfb2a","keyword":"纳米涂层","originalKeyword":"纳米涂层"},{"id":"b6870c77-98e2-4c4b-b2c2-a0b5703da5da","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"687b486c-ef22-469b-b9c7-29dfef9e075f","keyword":"正交试验设计","originalKeyword":"正交试验设计"},{"id":"eb9f7a23-d81f-4c89-a283-148c547e1918","keyword":"优化","originalKeyword":"优化"}],"language":"zh","publisherId":"cldb201202019","title":"正交试验设计优化等离子喷涂纳米Al2O3-13%TiO2涂层工艺参数","volume":"26","year":"2012"},{"abstractinfo":"用碳化硅颗粒增强泡沫铝为夹芯,不锈钢圆管为面板制备层合圆管,研究了层合圆管在准静态压缩条件下的纵向和横向变形行为和能量吸收性能.研究表明,层合圆管的纵向压缩变形方式与空管相比发生了改变,由不对称变形模式变为轴对称变形模式;载荷-位移曲线平台段锯齿形波动与曲屈圈的形成呈现对应关系;层合圆管纵向和横向的吸能能力均远大于不锈钢圆管和泡沫铝吸收的能量之和,并且随着应变的增加,层合圆管的吸能能力增加更为快速;层合圆管在保持泡沫铝轻质的同时,在纵向和横向两个方向上均大幅度提高泡沫铝的吸能能力.","authors":[{"authorName":"王松林","id":"9d837e69-89ee-4374-aa0e-d060567b025e","originalAuthorName":"王松林"},{"authorName":"凤仪","id":"defded92-9215-4c56-9054-91947fb4fd15","originalAuthorName":"凤仪"},{"authorName":"徐屹","id":"16247702-f21e-4728-bb83-6edffb448f33","originalAuthorName":"徐屹"},{"authorName":"张学斌","id":"2195f55c-2a66-4c70-beee-3eb966c7356d","originalAuthorName":"张学斌"},{"authorName":"沈剑","id":"232972b0-eebc-428a-95e8-49ba2ff7a0be","originalAuthorName":"沈剑"}],"doi":"10.3969/j.issn.1009-6264.2007.01.003","fpage":"9","id":"2c71f598-830f-4c45-9ff3-c8222c9f10dd","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"fffcea89-3740-41e2-829f-3479bdedbc31","keyword":"泡沫铝","originalKeyword":"泡沫铝"},{"id":"efbe7b67-4e09-4ba4-8a14-bdf2cdf96cd2","keyword":"层合圆管","originalKeyword":"层合圆管"},{"id":"0af88468-8e49-494c-aa5e-0219feecfea3","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"0878cb46-ee90-489c-b344-0608410911b2","keyword":"吸能性能","originalKeyword":"吸能性能"}],"language":"zh","publisherId":"jsrclxb200701003","title":"泡沫铝层合圆管纵向和横向压缩力学性能研究","volume":"28","year":"2007"},{"abstractinfo":"采用粉末冶金法制备多孔镁,孔隙率可在20%到55%范围内变化,并研究了多孔镁的压缩性能和抗弯强度与孔隙率之间的关系.结果表明,多孔镁的孔隙率、孔径可通过造孔剂的含量和粒度来控制,随着孔隙率的增加,抗压强度和杨氏模量变小,抗弯强度下降;采用粉末冶金方法制备的多孔生物镁不论是从压缩强度,杨氏模量还是从抗弯强度上来讲,都可以满足移植材料的要求.","authors":[{"authorName":"沈剑","id":"131ae221-dba0-4f8b-b5e6-e2844d68b480","originalAuthorName":"沈剑"},{"authorName":"凤仪","id":"bb717205-90c1-4c5d-a481-6ad238668cf9","originalAuthorName":"凤仪"},{"authorName":"王松林","id":"6280c407-9bff-4ae4-8003-f7883448e05d","originalAuthorName":"王松林"},{"authorName":"徐屹","id":"be521387-ceb5-48da-bb88-6f13b8253bc2","originalAuthorName":"徐屹"},{"authorName":"张学斌","id":"4bfdc142-eb53-468c-b131-c68604a820dc","originalAuthorName":"张学斌"}],"doi":"10.3969/j.issn.1005-8192.2006.03.003","fpage":"9","id":"778409ff-6cfa-4f9e-8630-732a4eb4951e","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"1562f6f4-fc3b-4dd9-bae0-c70ac83203b8","keyword":"粉末冶金","originalKeyword":"粉末冶金"},{"id":"1abbe85f-5c89-45f3-9576-d512bc99fd4c","keyword":"多孔镁","originalKeyword":"多孔镁"},{"id":"4c5c2342-683e-4398-9cc3-84d6f80c082b","keyword":"生物材料","originalKeyword":"生物材料"},{"id":"5a9c8b87-2896-4d3f-b598-17b09ad2d07e","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"c618edb5-a932-4b5b-adfb-7b01dbc016c8","keyword":"机械性能","originalKeyword":"机械性能"}],"language":"zh","publisherId":"jsgncl200603003","title":"多孔生物镁的制备与力学性能研究","volume":"13","year":"2006"},{"abstractinfo":"利用过氧钼酸前驱物,通过水热法方法成功制备了具有新颖结构的亚稳六方相Ag1.028H1.852Mo5.52O18纳米棒状,对该纳米材料的微观形貌结构、光吸收性质和光致变色特性等进行了表征,研究了不同光照条件下该材料光致变色性能.FESEM和TEM的测试结果表明,Ag1.028H1.852Mo5.52O18纳米棒呈现出类似于火炬状的半中空结构,根据纳米棒形貌的时间演化情况,讨论了该火炬状结构的可能生长机理.此外,Ag1.028H1.852Mo5.52O18纳米棒展现出独特的多重颜色光致变色现象,在紫外光照射下依次发生由白色到蓝色、棕黄色、墨绿色的颜色变化,在通氧的黑暗环境下又恢复为原来的状态,具有良好的可重复光致变色特性.","authors":[{"authorName":"周妍","id":"310feceb-c158-48c4-9f05-cb2f40bc96bb","originalAuthorName":"周妍"},{"authorName":"张然","id":"b3bf6331-15b6-4d26-ab25-61df9e558958","originalAuthorName":"张然"},{"authorName":"王松林","id":"3dde0049-481a-4498-bf53-301c64e2003b","originalAuthorName":"王松林"},{"authorName":"王晓芬","id":"d77224ef-e602-4bec-846d-48d23f83e23a","originalAuthorName":"王晓芬"}],"doi":"","fpage":"3112","id":"7b1fe9d3-5659-4887-aaf8-463eb0c5f836","issue":"11","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"385b4061-d1cf-400a-8588-d6ae66588d8e","keyword":"Ag1.028H1.852Mo5.52O18","originalKeyword":"Ag1.028H1.852Mo5.52O18"},{"id":"9f83944d-cd23-42ff-abfc-f7416311d9ae","keyword":"火炬状纳米棒","originalKeyword":"火炬状纳米棒"},{"id":"0609da22-fb24-447a-b2e2-a3312af4c1e0","keyword":"多重光致变色","originalKeyword":"多重光致变色"},{"id":"0fcd3174-4cc0-477f-81b1-a6e39ec33861","keyword":"过氧钼酸","originalKeyword":"过氧钼酸"},{"id":"7f087459-6007-42ce-a8fe-edfe9eef06f5","keyword":"水热法","originalKeyword":"水热法"}],"language":"zh","publisherId":"rgjtxb98201511033","title":"火炬状Ag1.028H1.852Mo5.52O18纳米棒的制备及其多重光致变色性能的研究","volume":"44","year":"2015"}],"totalpage":9,"totalrecord":84}