ZHENG Zhong
,
LI Deqian (Changchun Institute of Applied Chemistry
,
Chinese Academy of Sciences
,
Changchun
,
China Manuscript received 23 January
,
1995)
金属学报(英文版)
A technique was developed to study mass trans fer process and inter facial reaction in two phases system. This constant inter facial cell with a laminar flow was made into a cubic structure. The two fluids were continuously recycled and mixed. The concentration of each liquid could be monitored by two different methods. This kind of structure made both flows near the inter face flow parallel to the inter face. The inter face was smooth and steady. The mass trans fer rate could be judged by the linear velocity of the flows. The technique can be used for the analyses of the control step in both phases near the inter face in a diffusion control process. A preliminary hydrodynamics and mass trans fer study on the cell was presented, which ensures the distinguishing between a diffusion and a chemical reaction control process. A simplified mass transfer equation,N =0.5303D 1 /2* (Ci- Cb)* (V / B) 1/2, was achieved.
关键词:
: constant inter face cell
,
null
,
null
,
null
李岚
,
马欢
,
司风琪
,
祝康平
低温物理学报
为预防椭圆管换热器等设备内部结冰甚至堵塞,本文采用流体计算软件fluent建立了三维椭圆管内流动换热模型,研究了一定热边界条件下椭圆管内层流流体的结冰规律.通过对不同工况的模拟分析,得到了流体在管内不同位置的结冰规律以及进口温度、进口Re数、长短轴之比对冰层厚度以及管内换热产生的影响,结果表明:椭圆管截面内,不同径向位置的冰层厚度不同;沿轴向管内冰层厚度逐渐增加,压力损失增大,局部Nu逐渐减小;Re数减小,进口水温降低,都会使管内各处冰层厚度增大,从而增加了管道堵塞的危险.而长短轴比例增大时,长短轴方向冰层变化趋势相反.
关键词:
椭圆
,
层流
,
结冰
,
冰层厚度
,
努赛尔数