常炜
,
孙荣
,
于湉
,
宋世德
,
黄一
腐蚀与防护
doi:10.11973/fsyfh-201510017
依据NACE-SP0176-2007规范,在外加电流阴极保护系统中,辅助阳极与结构物表面的距离不小于1.5m,否则需要采用屏蔽层以防止过保护.在导管架外加电流阴极保护系统中,辅助阳极与导管架结构表面之间的距离是一个重要的参数,对阳极屏的使用与否有直接影响,也间接对阴极保护系统的造价和运行方案产生影响.通过阴极保护数值模拟计算技术,改变辅助阳极与导管架之间的距离,得到在无阳极屏蔽层并且不发生过保护的前提下,辅助阳极可以释放的最大电流,并通过实海试验予以了验证.数值模拟与试验结果均表明,针对辅助阳极与结构表面之间的不同距离条件控制辅助阳极的最大释放电流,不仅可以避免使用阳极屏蔽层带来一系列工程问题,而且能够为导管架外加电流阴极保护系统的优化设计提供重要依据.
关键词:
外加电流阴极保护
,
阳极屏蔽层
,
保护距离
,
数值模拟
余晓毅
,
常炜
,
于湉
,
黄一
,
宋世德
,
尚世超
,
胡尧
表面技术
doi:10.16490/j.cnki.issn.1001-3660.2016.05.010
目的:外加电流阴极保护技术逐渐应用于船舶和海洋结构物防腐领域,但随之而来的杂散电流很可能使平台附近的海底管道本身或者其牺牲阳极阴极保护系统产生电化学腐蚀,缩短海底管道使用寿命,甚至破坏管道本身结构而造成严重的生产事故,因此需要预测外加电流阴极保护系统对附近海底管道及其牺牲阳极阴极保护系统可能造成的不利影响。方法提出一种基于边界元法的预测海底管道杂散电流影响的数值模拟方法,建立包括域内控制方程和对应的边界条件的数学模型,可以计算得到海底管道受杂散电流影响区域的位置和范围,并且得到受影响区域表面保护电位的分布情况。结果通过实验室海底管道模型杂散电流试验测量结果与数值模拟结果进行比较,验证该方法预测海底管道杂散电流影响的准确性,数值模拟仿真结果与试验测量结果最大误差百分比约为1.7%,平均误差百分比小于0.2%。数值模拟计算结果准确地预测了海底管道模型表面保护电位分布情况,预测了导管架平台模型外加电流阴极保护系统对海底管道模型杂散电流的影响情况。结论使用的边界元阴极保护数值模拟技术可以准确预测海底管道杂散电流的影响情况,为海底管道杂散电流影响预测研究提供了有力工具。
关键词:
外加电流阴极保护
,
杂散电流
,
海底管道
,
电化学腐蚀
,
边界元法
,
保护电位
李民强
,
郑震生
,
董亮
,
杨光
,
蔡峰
,
于俊峰
,
吴广春
表面技术
doi:10.16490/j.cnki.issn.1001-3660.2016.07.019
目的:对海洋平台导管架外加电流阴极保护设计通电点的选择等问题进行分析,为海洋平台导管架阴极保护设计提供指导。方法利用BEASY CP数值模拟软件,通过数值模拟计算方法对导管架外加电流阴极保护系统设计的基础问题进行了研究,包括保护对象的确定、通电点的设置、辅助阳极选型和阳极数量及安装位置等。结果导管架外加电流阴极保护设计时,若只考虑海水浸渍部分,则无法使导管架海水和海泥部分均得到有效保护。设置通电点时,考虑电阻(1.01×10-6Ω/m)和不考虑电阻两种情况下导管架的保护电位相近,绝对误差不超过1 mV,通电点的位置对保护效果影响较小。阴极保护输出电流为17 A时,三种不同直径(300、600、900 mm)辅助阳极阴极保护系统的保护相近,保护电位在803~899.2 mV(vs. CSE)之间。三种不同阳极设计方案的输出电流分别为17、17、16.5 A,对应的保护效果分别为803.34~899.20 mV(vs. CSE)、802.96~850.64 mV(vs. CSE)、800.36~848.26 mV(vs. CSE)。2#阳极的保护效果比1#阳极的保护效果均匀,两支阳极方案在最低保护效果下所需电流比单支阳极更小且保护更均匀。结论设计外加电流阴极保护系统时,应当充分考虑与待保护对象相连接的所有金属结构物。对于小型导管架而言,金属电阻对导管架外加电流阴极保护系统的电位分布影响很小,因此通电点的选择较容易。外加电流阴极保护系统设计时应考虑电流密度对辅助阳极的消耗影响,选取适当尺寸的阳极。通过数值模拟方法,可以优化阳极数量和位置,从而实现保护电流较小且保护效果更均匀,并满足一定的经济性要求。
关键词:
导管架
,
外加电流阴极保护
,
数值模拟
,
设计
,
辅助阳极
,
通电点