{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用普通直流电沉积和超声直流电沉积制备Cu/TiO2纳米管阵列/Ti基复合薄膜,而后在NaOH溶液中用电氧化的方法将Cu单质氧化成CuO,制备了CuO/TiO2纳米管阵列/Ti基复合薄膜.利用扫描电子显微镜(SEM)和X射线衍射仪(XRD)对两种复合薄膜电极的形貌和结构进行了表征,详细考察了电镀工艺参数(电流密度)和超声波对复合薄膜形貌的影响.同时通过稳态光电响应技术对复合薄膜电极组成的染料敏华太阳能电池(DSSC)的光电性能进行了研究,结果表明:通过普通直流电沉积在工艺参数(3 mA/cm2、5min)处制备的复合薄膜组装的DSSC具有该体系下的最佳光电性能(Jsc=9.00mA/cm2、Voc=0.664V、FF =0.512、η=3.06%);在同等条件下通过超声辅助直流电沉积制备的复合薄膜组装的DSSC的最佳光电性能(Jse=15.50mA/cm2、Woc =0.688V、FF=0.505、η=5.39%)出现在工艺参数为(6mA/cm2、5min)处.对比可知超声条件下的光电性能较好,且最佳光电性能工艺参数发生了后移.","authors":[{"authorName":"聂洋洲","id":"4437bc09-b19e-4b71-823b-9cbfd2b9b6ca","originalAuthorName":"聂洋洲"},{"authorName":"杨国华","id":"22b53e3d-57ed-41b8-9960-4e4779f4006a","originalAuthorName":"杨国华"},{"authorName":"顾玉宗","id":"ad85175a-1eca-42c8-976e-e417bc270f44","originalAuthorName":"顾玉宗"}],"doi":"10.3969/j.issn.1007-4252.2012.03.013","fpage":"247","id":"1b5a18e0-f172-4d16-b57a-1dc0f7bd085f","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"71140017-65de-432b-9845-d9479a8d7491","keyword":"CuO/TiO2纳米管阵列/Ti基复合薄膜","originalKeyword":"CuO/TiO2纳米管阵列/Ti基复合薄膜"},{"id":"a9ddd15c-4b8f-4a18-a44c-0d657ce30b11","keyword":"超声辅助","originalKeyword":"超声辅助"},{"id":"a217e9de-c8a5-482a-bf9a-b3cb7889abf1","keyword":"工艺参数","originalKeyword":"工艺参数"},{"id":"b0523c7f-6073-4f1b-a67e-955dbc01b90d","keyword":"染料敏化太阳能电池","originalKeyword":"染料敏化太阳能电池"}],"language":"zh","publisherId":"gnclyqjxb201203013","title":"染料敏化太阳能电池中CuO/TiO2薄膜制备及应用","volume":"18","year":"2012"},{"abstractinfo":"使用阳极氧化法制备了TiO2/Ti纳米管阵列薄膜材料. TiO2纳米管管孔分布均匀,管径约为80~90nm,平均管长约为1.8μm. 在400℃下煅烧2h后,TiO2纳米管阵列为锐钛矿型,并且结构保持良好,没有出现变形、剥落的现象. 以TiO2/Ti纳米管阵列薄膜材料为光催化剂,同时施加0~+3.0V范围内变化的电场,考察了外加电压对降解亚甲基蓝光电协同效率的影响. 结果表明在外加+1.4V电压的条件下,光电协同效率达到124%. TiO2纳米管阵列与基底Ti板结合牢固,多次重复使用后没有发现降解率的明显变化. ","authors":[{"authorName":"陈怡","id":"53986319-9f54-40d2-bf43-dd0042290694","originalAuthorName":"陈怡"},{"authorName":"施利毅","id":"4b96d1eb-0862-487c-90a5-6a146e3d4a33","originalAuthorName":"施利毅"},{"authorName":"袁帅","id":"58b2ba29-dcc9-478d-b4f7-7596d8886fc0","originalAuthorName":"袁帅"},{"authorName":"吴钧","id":"e98f6337-8f49-4362-ac55-2f8fb561dd32","originalAuthorName":"吴钧"},{"authorName":"张美红","id":"8a83a6fc-0169-4c1d-b06a-c51c4b6abe37","originalAuthorName":"张美红"},{"authorName":"方建慧","id":"a26aa881-ce3f-4c9e-8b42-0c6cf81b8ee0","originalAuthorName":"方建慧"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2009.00680","fpage":"680","id":"b242a794-b58a-4138-8fa7-3469568de794","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"b78869e3-5298-4e1f-beff-f08b1797d1fc","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"030cec34-6baa-485e-afde-47c1948e75c8","keyword":" TiO2 nanotube array","originalKeyword":" TiO2 nanotube array"},{"id":"d87e23a5-1097-4273-9a2f-5c74fa329fae","keyword":" synergetic effect of UV light and electric field","originalKeyword":" synergetic effect of UV light and electric field"},{"id":"38528a8c-4852-430c-86b1-0fef343ae3bf","keyword":" methylene blue","originalKeyword":" methylene blue"}],"language":"zh","publisherId":"1000-324X_2009_4_24","title":"TiO2纳米管阵列薄膜光电协同降解亚甲基蓝的研究","volume":"24","year":"2009"},{"abstractinfo":"使用阳极氧化法制备了TiO2/Ti纳米管阵列薄膜材料.TiO2纳米管管孔分布均匀,管径约为80~90nm,平均管长约为1.8μm.在400℃下煅烧2h后,TiO2纳米管阵列为锐钛矿型,并且结构保持良好,没有出现变形、剥落的现象.以TiO2/Ti纳米管阵列薄膜材料为光催化剂,同时施加0~+3.0V范围内变化的电场,考察了外加电压对降解亚甲基蓝光电协同效率的影响.结果表明在外加+1.4V电压的条件下,光电协同效率达到124%.TiO2纳米管阵列与基底Ti板结合牢固,多次重复使用后没有发现降解率的明显变化.","authors":[{"authorName":"陈怡","id":"35357326-f12e-47b4-9c53-9e29875d5c90","originalAuthorName":"陈怡"},{"authorName":"施利毅","id":"f5edfea3-2192-4aef-ae7f-d78b61442d99","originalAuthorName":"施利毅"},{"authorName":"袁帅","id":"7caa77ba-602f-42d8-95b5-ab0ffa7a4a40","originalAuthorName":"袁帅"},{"authorName":"吴钧","id":"dbd9e361-8fd2-4c64-9f4a-9a139ea9af8c","originalAuthorName":"吴钧"},{"authorName":"张美红","id":"edffa7eb-d50b-4d27-b3fb-f5becfee10d1","originalAuthorName":"张美红"},{"authorName":"方建慧","id":"a81ccfed-5311-4bc2-9e6a-06c56b34781b","originalAuthorName":"方建慧"}],"doi":"10.3724/SP.J.1077.2009.00680","fpage":"680","id":"d9dac6e7-90bd-4aa6-8017-39c911724fa1","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"46e5f9a4-4c50-40cb-bfe8-7f37d9ac3f75","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"4af5abac-8c01-4786-8bba-89b133ccdd2a","keyword":"TiO2纳米管阵列","originalKeyword":"TiO2纳米管阵列"},{"id":"bca92c74-7e35-477c-bc47-7521924ae782","keyword":"光电协同","originalKeyword":"光电协同"},{"id":"9169a928-e994-4900-afd1-01987a77315d","keyword":"亚甲基蓝","originalKeyword":"亚甲基蓝"}],"language":"zh","publisherId":"wjclxb200904007","title":"TiO2纳米管阵列薄膜光电协同降解亚甲基蓝的研究","volume":"24","year":"2009"},{"abstractinfo":"采用液相沉积法,将铝基多孔阳极氧化铝(AAO)模板浸入到(MH4)2TiF6溶液中,制备出高度有序的TiO2纳米管阵列薄膜,并在不同的温度下进行了热处理.用场发射扫描电子显微镜、透射电子显微镜和X射线衍射仪等手段对试样的微观形貌、结构及物相进行了表征.结果表明,TiO2纳米管的形貌依赖于AAO的特征,薄膜是由外径大约200 nm,壁厚约40 nm的TiO2纳米管阵列组成,薄膜厚度约25μm.原位模板法制备的TiO2纳米管阵列薄膜为非晶态,在400℃空气中焙烧2 h转变为锐钛矿相TiO2.经过650℃焙烧仍保持纳米管结构,表现出较好的热稳定性.","authors":[{"authorName":"蒋武锋","id":"89dc847d-6540-4487-a112-422d496a4372","originalAuthorName":"蒋武锋"},{"authorName":"凌云汉","id":"6203cbb8-1ea3-45ec-a8a5-ad03666241ee","originalAuthorName":"凌云汉"},{"authorName":"白新德","id":"d377b3b4-4804-4852-ac08-d636748e0a1d","originalAuthorName":"白新德"},{"authorName":"李洪义","id":"3214931e-9a71-426e-881b-26cab6e3fcdf","originalAuthorName":"李洪义"},{"authorName":"苍大强","id":"0e90e29a-f892-49b0-ac18-155e1b79f2f3","originalAuthorName":"苍大强"}],"doi":"","fpage":"1178","id":"4eb087e1-a24c-49b9-af3a-1a63e97fb213","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"f59f7d0f-2051-4e9d-92a7-067683551137","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"189cb382-c601-45fc-8027-cc931c1dc2a2","keyword":"纳米管阵列薄膜","originalKeyword":"纳米管阵列薄膜"},{"id":"f3397c19-5168-4259-9175-a555ba47b5d8","keyword":"液相沉积","originalKeyword":"液相沉积"},{"id":"239c47b4-8763-45b6-a4d3-2a6765c9faf8","keyword":"阳极氧化铝(AAO)","originalKeyword":"阳极氧化铝(AAO)"}],"language":"zh","publisherId":"xyjsclygc200707011","title":"原位模板法在铝基底上制备TiO2纳米管阵列薄膜","volume":"36","year":"2007"},{"abstractinfo":"阳极氧化TiO2纳米管阵列由于具有高度有序的独特纳米结构和优异的物理化学性能,已成为纳米材料以及太阳能光转化利用等研究领域的热点之一.国内外围绕纳米管阵列的制备、改性及应用等方面开展了大量研究,取得了显著成果.最近,纳米管阵列改性方面的研究受到人们的特别关注,相关研究已经为这种高度有序纳米材料的应用打下良好基础.本文较详细地介绍了TiO2纳米管阵列的改性研究进展,分析了存在的主要问题,提出了今后的发展建议.","authors":[{"authorName":"刘世凯","id":"c6e80729-4ea9-45a7-a796-b5453676c218","originalAuthorName":"刘世凯"},{"authorName":"杨海滨","id":"843625cf-7dd6-4c4f-8e82-95398f0765ad","originalAuthorName":"杨海滨"},{"authorName":"付乌有","id":"8667d119-dabc-4bfc-847f-7eb0a32c4bde","originalAuthorName":"付乌有"}],"doi":"","fpage":"597","id":"6215370a-1530-4c82-a99a-0cada89ecaa9","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"012cca8d-4023-4404-99c0-6ea6a0822ab6","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"05581339-4667-46d6-a042-69230960e653","keyword":"纳米管阵列","originalKeyword":"纳米管阵列"},{"id":"00f1d5e6-f9ad-4468-8662-53acce87eeb1","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"93c51b97-e526-4ef4-abd2-9021ad906b81","keyword":"改性","originalKeyword":"改性"}],"language":"zh","publisherId":"gsytb201103022","title":"阳极氧化TiO2基纳米管阵列改性的研究进展","volume":"30","year":"2011"},{"abstractinfo":"采用阳极氧化法在Ti-6Al-4V合金表面制备了TiO2基纳米管阵列.所用电解液为0.3 mol/L.H3PO4与0.14 mol/L NH4F的混合溶液,使用电压10~50 V.用冷场发射扫描电子显微镜(FESEM)、能量色散X射线荧光光谱仪(EDX)和X射线衍射仪(XRD)表征了所制备薄膜的形貌、元素组成和晶型结构.用紫外-可见光分光光度计分析了薄膜的光吸收特性,用电化学工作站测试了其光电特性.结果表明,在20~40V电压下可以做出不同管径的纳米管,经600℃热处理的样品在可见光区有较好的吸收和光电特性.","authors":[{"authorName":"罗保民","id":"ad90619b-72bf-4890-8e4e-668c259995dc","originalAuthorName":"罗保民"},{"authorName":"杨海滨","id":"b7f3b5fa-8ddb-43ed-95e2-1e23babbde46","originalAuthorName":"杨海滨"},{"authorName":"刘世凯","id":"2673d6cf-9754-40ee-be89-6f8093b3ba7c","originalAuthorName":"刘世凯"}],"doi":"","fpage":"19","id":"1e81e602-c5fa-4029-b93e-5e9199036c68","issue":"10","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"30618a03-4a65-4825-adc0-2003583da1c4","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"1b7a7910-c238-472a-92b1-a85ebe66309f","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"4a8b6d17-da7e-446d-af61-9a24e3e9bb26","keyword":"纳米管阵列","originalKeyword":"纳米管阵列"},{"id":"d2b09df0-6858-4140-9d21-bad40d03609c","keyword":"Tj-6Al-4V","originalKeyword":"Tj-6Al-4V"}],"language":"zh","publisherId":"zgcljz200810005","title":"Ti-6Al-4V合金表面TiO2纳米管阵列薄膜的制备与光电特性研究","volume":"27","year":"2008"},{"abstractinfo":"采用电化学阳极氧化法在HF酸水溶液中使纯钛表面生成结构致密有序的TiO2纳米管阵列薄膜,考察了阳极氧化电压和阳极氧化时间对TiO2纳米管阵列形貌的影响,讨论了TiO2纳米管的形成机理.采用复阻抗谱方法,测量了获得的TiO2纳米管阵列薄膜在不同湿度下的电阻-电抗曲线和相位角-频率曲线,由此分析得到,试样的等效电路由2个RC并联回路串联而成,并拟合出等效电路各元件的参数值,说明TiO2纳米管阵列薄膜表面对湿度变化有较好的响应.","authors":[{"authorName":"王红","id":"ff98310c-3c98-49fa-8dbe-48df9dfd25b0","originalAuthorName":"王红"},{"authorName":"傅刚","id":"7e6f028b-dcc3-4519-99b0-b1d38c241ffa","originalAuthorName":"傅刚"},{"authorName":"陈环","id":"96cef0cb-12c2-45c6-bfcc-9380ae9fd4e6","originalAuthorName":"陈环"},{"authorName":"刘志宇","id":"77242276-0cda-4826-adab-b97b35a84248","originalAuthorName":"刘志宇"}],"doi":"","fpage":"100","id":"d6c89ddb-0775-4670-a944-174a0271ea49","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"93cdfde8-4462-40e8-a777-99c149d85116","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"0630a096-6e03-4b90-ad9f-9c6a8a582dc1","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"208d560b-06db-493b-abe9-2e49e437681d","keyword":"纳米管阵列","originalKeyword":"纳米管阵列"},{"id":"da96282d-2f44-42c4-aed2-d4243a5cda62","keyword":"湿度","originalKeyword":"湿度"},{"id":"b00ffea0-98ca-49a7-9bcd-5e125549a79c","keyword":"复阻抗分析","originalKeyword":"复阻抗分析"}],"language":"zh","publisherId":"cldb2008z1032","title":"TiO2纳米管阵列的制备及复阻抗分析","volume":"22","year":"2008"},{"abstractinfo":"在(NH4)2TiF6的水溶液中,以铝基阳极氧化铝为模板,采用水热法制备了TiO2纳米管阵列. 使用场发射扫描电镜和X射线衍射对水热合成产物进行了表征. 实验结果表明,水热处理所得TiO2纳米管阵列具有特殊的形貌,其表面为连续的多孔状,断面为不连续、相互分离的管状;管口和管壁分别由平均粒度约45和25 nm的微细TiO2颗粒紧密堆积而成. 采用本方法制备的TiO2纳米管阵列无需热处理便已具有明显的锐钛矿型晶相特征.","authors":[{"authorName":"李纲","id":"ee1ba906-5be6-4a3a-8f0a-43ed8304d490","originalAuthorName":"李纲"},{"authorName":"刘中清","id":"afe0a98f-f9bf-490a-931a-56499b5d15a1","originalAuthorName":"刘中清"},{"authorName":"颜欣","id":"584dc337-292f-4088-ad99-98aa662483d3","originalAuthorName":"颜欣"},{"authorName":"张昭","id":"27574680-82c1-404b-b8df-9f6023d52d25","originalAuthorName":"张昭"}],"doi":"","fpage":"680","id":"a045937e-b402-474e-945f-3e687c08fee7","issue":"8","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"6ee38a2a-b510-42a7-bc28-e7e497462c68","keyword":"二氧化钛","originalKeyword":"二氧化钛"},{"id":"937bac42-8eab-460c-b01d-548c1274ec44","keyword":"纳米管阵列","originalKeyword":"纳米管阵列"},{"id":"07df76eb-67a5-400a-94cb-889ff4880fdf","keyword":"铝基","originalKeyword":"铝基"},{"id":"4bc8c8e1-0cc4-498d-b093-4aca842ef8a9","keyword":"阳极氧化铝模板","originalKeyword":"阳极氧化铝模板"},{"id":"4c4c1ea7-84cf-4027-a27d-2cb7f6180f1a","keyword":"水热合成","originalKeyword":"水热合成"}],"language":"zh","publisherId":"cuihuaxb200808002","title":"铝基阳极氧化铝模板水热法制备TiO2纳米管阵列","volume":"29","year":"2008"},{"abstractinfo":"综述了近年来有序TiO2纳米管阵列薄膜的制备、性质及其在能源、环境、生物组织工程等领域应用的研究进展.","authors":[{"authorName":"张文彦","id":"455390d9-b0fc-4810-82d7-1228dc947236","originalAuthorName":"张文彦"},{"authorName":"奚正平","id":"da0e8654-ab4a-430e-a8d5-99115261fdec","originalAuthorName":"奚正平"},{"authorName":"李广忠","id":"42208a1e-b805-496b-9311-36b239eb6753","originalAuthorName":"李广忠"},{"authorName":"李亚宁","id":"fa08dd5f-8959-4a99-9cbf-27b6a35d3717","originalAuthorName":"李亚宁"},{"authorName":"张健","id":"1e4e0b0d-de0f-45cf-908b-7c39ffbb401d","originalAuthorName":"张健"},{"authorName":"汤慧萍","id":"8b68c9ff-7094-4579-a5b7-1b9db7e7bded","originalAuthorName":"汤慧萍"}],"doi":"","fpage":"1876","id":"a1ef0086-a9ad-432c-b664-cf5ebfe56926","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"88edfcc1-83a9-4f9f-ae11-6c80ea1b6039","keyword":"钛","originalKeyword":"钛"},{"id":"814db403-f21d-4496-9adb-57ebeea93fbf","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"8d37c203-8697-49d1-9ec1-bc5155f6f612","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"3026533c-6b21-4409-b99e-45cddfbb7622","keyword":"纳米管阵列","originalKeyword":"纳米管阵列"}],"language":"zh","publisherId":"xyjsclygc200910042","title":"有序TiO2纳米管阵列膜材料的研究进展","volume":"38","year":"2009"},{"abstractinfo":"采用阳极氧化法在钛片上制备了TiO2纳米管阵列光电极, 利用扫描电子显微镜(SEM)和X射线衍射仪(XRD) 对TiO2纳米管的形貌和结构进行了表征, 详细考察了氧化工艺参数对纳米管阵列形貌的影响, 并通过稳态光电响应技术对TiO2纳米管电极的光电化学性能进行了研究. 结果表明, 在1wt HF电解液中, 控制氧化电压为20V, 反应30min后, 在Ti表面获得了垂直导向的TiO2纳米管阵列, 孔径约为90nm, 管壁厚度约为10nm. 经600℃退火处理后, TiO2纳米管阵列为锐钛矿型与金 红石型的混晶结构, 此时电极的光电性能最佳, 与TiO2纳米多孔膜电极相比, 光电性能大幅提高.","authors":[{"authorName":"李贺","id":"c1dd1d35-c7eb-45c6-9855-32dfaa4969b6","originalAuthorName":"李贺"},{"authorName":"姚素薇","id":"4a5bd892-7af6-4289-b0b6-e2690e9711d2","originalAuthorName":"姚素薇"},{"authorName":"张卫国","id":"f19d9143-378d-4331-93bd-e3e257ecf863","originalAuthorName":"张卫国"},{"authorName":"王宏智","id":"244fd233-c0db-4c57-ac1e-aeb94bbb294a","originalAuthorName":"王宏智"},{"authorName":"贲宇恒","id":"01df1568-46d9-4ed4-9e42-8889eadc48f0","originalAuthorName":"贲宇恒"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00349","fpage":"349","id":"a39bf1f8-5191-4a9a-8e2d-220a53cca17a","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"ff4cd619-26e3-4048-8184-6988841f994c","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"1c24497a-746e-4c0e-bfcb-c1ef4d7ed769","keyword":" TiO2 nanotubes","originalKeyword":" TiO2 nanotubes"},{"id":"e1b28cef-37aa-4d08-b033-076fb04315ed","keyword":" array","originalKeyword":" array"},{"id":"252f043f-cd33-4b73-93c3-dc5efe6b63e5","keyword":" photoelectrochemistry","originalKeyword":" photoelectrochemistry"}],"language":"zh","publisherId":"1000-324X_2007_2_16","title":"阳极氧化法制备TiO2纳米管阵列及其光电性能研究","volume":"22","year":"2007"}],"totalpage":12587,"totalrecord":125866}