FANG Xiu-hui
,
YANG Ping
,
LU Fa-yun
,
MENG Li
钢铁研究学报(英文版)
Mechanical properties, microstructure and texture evolution were studied in two tensile-deformed high manganese TWIP steels at different temperatures. Special attention was paid to the effects of deformation temperature and grain orientation on twinning behavior. The results showed that, at -70 ℃ and at room temperature, both twins and hexagonal martensite were found in a lower manganese steel of 26Mn. With deformation temperature rising, twins became less and they disappeared at 500 ℃. Strong <111> texture appeared at 300 ℃, while it weakened at 500 ℃ due to the low strain rate and higher stacking fault energy. EBSD measurement revealed the dependence of deformation twinning on grain orientation at all test temperatures.
关键词:
high manganese steel
,
warm deformation
,
TWIP effect
,
texture
MA You-ping
,
LI Xiu-lan
,
WANG Cheng-hui
,
LU Lu
钢铁研究学报(英文版)
A high-manganese austenitic steel matrix (Mn13) composite reinforced with TiN ceramic particles was synthesized by means of Vacuum-Evaporation Pattern Casting (V-EPC). The composite microstructure and interface bonding of TiN/matrix were analyzed utilizing optical microscope (OM) and X-ray diffraction (XRD). The effects of different volume fraction of TiN on impact wear resistance were evaluated by MLD-10 impact wear test.The results showed that TiN was evenly distributed in composite layer and had a good interface bonding with matrix when the volume fractions of TiN were 27% and 36%, respectively. However, cast defects and TiN agglomeration occurred when the TiN volume fraction increased to 48%. Compared with high-manganese austenitic steel (Mn13), the impact wear resistance of the TiN-reinforced composite is better. In small impact load conditions, composite layer can effectively resist abrasives wear and TiN particles played an important role in determining impact wear resistance of composite layer. In large impact load, the synergistic roles of spalling of TiN particles and the increase of work hardening of Mn13 based material are responsible for impact wear resistance.
关键词:
high manganese steel
,
TiN
,
impact wear
,
V-EPC cast-penetration