{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用纹影法,在定容燃烧弹中研究了较高当量和不同初始压力下氢气空气预混合气的燃烧特性,分析了两参数对其燃烧特性的影响。试验结果表明,本实验条件下的氢气空气预混合物燃烧过程中,主火焰两侧出现挤流火焰,且挤流火焰的传播明显快于主火焰;根据出现挤流火焰与否、两侧挤流火焰相遇与否、实验时的热力参数、燃料浓度等条件,燃烧过程可分为四个阶段;在本文的实验条件下随着当量比增加,挤流火焰燃烧速度加快,其倾向于自燃时的多点燃烧;随着初始压力降低,挤流火焰逐渐出现在主火焰层流燃烧阶段。","authors":[{"authorName":"刘兴华","id":"e9f7ffd1-2e21-40d8-bf68-d7620affa6a4","originalAuthorName":"刘兴华"},{"authorName":"樊志强","id":"f78412d1-7da9-4ec0-bb23-bcfd6e5120da","originalAuthorName":"樊志强"},{"authorName":"酒建刚","id":"f0faff3c-00ea-438b-a544-2c004bf210c5","originalAuthorName":"酒建刚"},{"authorName":"王汝维","id":"c73cf1c8-fcd3-473a-ba18-c24a22555558","originalAuthorName":"王汝维"},{"authorName":"刘福水","id":"05849714-a4b7-4a7d-94cd-1d49d301cdb8","originalAuthorName":"刘福水"}],"doi":"","fpage":"1639","id":"6a0174b0-909c-4ab8-be21-ff5ffbf11fa8","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"8f1edf5b-78d0-4513-a9fe-e5d7425ebfd8","keyword":"氢气","originalKeyword":"氢气"},{"id":"b26ce8ac-1cff-4f85-a457-3c175022d89b","keyword":"当量","originalKeyword":"当量比"},{"id":"9df8a3b0-4941-4faa-900b-57658ad5e78e","keyword":"挤流火焰","originalKeyword":"挤流火焰"},{"id":"9cf4c538-4066-4599-ae2d-c2938ca21144","keyword":"燃烧特性","originalKeyword":"燃烧特性"},{"id":"123bd14f-8c73-4ab9-afed-381d3ca543af","keyword":"定容燃烧弹","originalKeyword":"定容燃烧弹"}],"language":"zh","publisherId":"gcrwlxb201209044","title":"较高当量氢气空气预混合气的燃烧特性研究","volume":"33","year":"2012"},{"abstractinfo":"对燃料一空气非预混、完全预混与部分预混三种混合模式下的无焰燃烧状态进行了实验和数值模拟研究。采用了详细化学反应机理和已被实验验证的算法进行数值模拟。研究发现三种混合模式下无焰燃烧状态的区别是由初始反应物的射流总动量的不同决定的。当炉内大尺度流场结构类似时,初始反应物射流总动量越大,炉内烟气循环越剧烈,温度分布越均匀,峰值温度越低,NOx越低。数值模拟发现OH自由基峰值位置与温度峰值位置基本重合;而H2CO峰值位置主要分布在主反应区中的低温区域。实验测量了当量比对无焰燃烧炉内温度和NOx排放值的影响,并发现部分实验还发现,部分预混、非预混和完全预混无焰燃烧时,NO占NOx总量的百分比分别为94.3%、91.9%和76,9%。","authors":[{"authorName":"李鹏飞","id":"cdf5e2dc-0499-4ad6-8a69-e5831f1fa7a3","originalAuthorName":"李鹏飞"},{"authorName":"王飞飞","id":"7d6aa72a-fff6-436c-85e6-ead1e9de36d0","originalAuthorName":"王飞飞"},{"authorName":"米建春","id":"8b277c0b-8962-4194-957e-228dd11fa384","originalAuthorName":"米建春"},{"authorName":"梅振锋","id":"3b85d383-2674-4408-a480-1e198c0f90e8","originalAuthorName":"梅振锋"}],"doi":"","fpage":"1592","id":"3bf797a3-2b79-4733-8e0f-2796bacf947f","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"afb2d2be-7165-4715-80c0-63ae7232b959","keyword":"无焰燃烧","originalKeyword":"无焰燃烧"},{"id":"3d9a19ac-2fcf-486b-8914-bf1bf1323a09","keyword":"高温空气燃烧","originalKeyword":"高温空气燃烧"},{"id":"6e78e46b-be43-46cd-984f-4a8a55a290b6","keyword":"预混","originalKeyword":"预混"},{"id":"9b935fce-8c0a-45da-b5a0-cc46c186fe97","keyword":"NOx","originalKeyword":"NOx"},{"id":"689c3e6d-7087-4b87-8d3d-8df0df164c23","keyword":"当量","originalKeyword":"当量比"}],"language":"zh","publisherId":"gcrwlxb201109041","title":"当量和初始混合模式对无焰燃烧的影响","volume":"32","year":"2011"},{"abstractinfo":"通过调控DDS的添加量,制备不同胺/环氧当量的TDE-85/DDS环氧树脂体系:环氧过量(r=0.8)、等当量(r=1)和胺过量(r=1.2);将氨基化多壁碳纳米管(MWCNTs-NH2)加入这三种体系中,研究当量比对MWCNTs-NH2/环氧树脂复合材料的固化动力学和拉伸性能的影响.结果表明,MWCNTs-NH2对环氧-胺体系固化动力学和拉伸性能的影响与r密切相关.当r=0.8时,MWCNTs-NH2可以充分地与环氧基团发生开环反应,树脂体系的活化能显著降低,拉伸强度和模量分别提高了17%和20%;当r=1时,MWCNTs-NH2加入后,活化能降低的同时固化反应动力学由化学控制转变为扩散控制,拉伸强度和模量分别提高10%和14%;当r=1.2时,MWCNTs-NH2加入后,树脂体系在反应后期的活化能降低,造成局部的过度交联,拉伸强度降低了14%,模量仅提高了9%.","authors":[{"authorName":"唐峰","id":"47f54934-0ade-45a1-abf3-dc3840f78100","originalAuthorName":"唐峰"},{"authorName":"张清杰","id":"b68d4727-bc7e-4b95-a879-84cb3d36c72c","originalAuthorName":"张清杰"},{"authorName":"高亮","id":"6be702d0-b016-4b27-b4f6-bf57095df2b0","originalAuthorName":"高亮"},{"authorName":"吴剑桥","id":"8fddb510-d11b-49fe-a780-90195ad34cae","originalAuthorName":"吴剑桥"},{"authorName":"隋刚","id":"74a31e16-b102-4f99-8dc0-179edc0ef9f2","originalAuthorName":"隋刚"},{"authorName":"杨小平","id":"05a5e302-6b21-4988-a718-fe42b58db2e9","originalAuthorName":"杨小平"}],"doi":"","fpage":"85","id":"aab9b340-6fc2-45ff-9c16-56dd6771ecb3","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"9e1f65c1-e954-4d5e-92b2-c90dee033ec0","keyword":"环氧-胺体系","originalKeyword":"环氧-胺体系"},{"id":"736bc123-0851-4b03-86e7-54ac4d52bd70","keyword":"当量","originalKeyword":"当量比"},{"id":"354b233d-b6d0-4bc0-8e6d-f18d067be55e","keyword":"MWCNTs-NH2","originalKeyword":"MWCNTs-NH2"},{"id":"a8c84c0b-83fe-401e-97d2-8591a120bb78","keyword":"固化动力学","originalKeyword":"固化动力学"},{"id":"f1e32b0f-8301-4304-af2b-e7af0155aa1e","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"blgfhcl201605015","title":"胺/环氧当量比对MWCNTs-NH2/环氧树脂复合材料性能的影响","volume":"","year":"2016"},{"abstractinfo":"环氧固化物在许多工业领域有非常重要的应用价值.使用不同分子结构和不同用量的固化剂能够影响环氧树脂交联网络结构,进而影响环氧固化物的性能.通过对不同TDE-85环氧树脂固化配方体系进行了反应动力学分析,静态和动态力学性能分析,考查固化剂种类和用量对环氧树脂浇铸体和碳纤维复合材料性能的影响.研究发现,含DDS和DETDA体系的固化反应均为接近一级反应,DDS固化剂的反应活化能较高于DETDA固化剂.随着固化剂活泼氢当量与环氧当量比值r的增加,树脂的固化度提高,拉伸强度和伸长率也相应增大,但其模量有所降低.同时,树脂体系的玻璃化转变温度随着r值的增加先升高再降低.实验研究发现,树脂基体模量增加,相应的碳纤维单向复合材料样品的断裂模式从基体破坏为主转变为界面破坏,层间剪切强度也高.随着浇铸体基体模量的提高,复合材料层间剪切破坏模式由基体破坏转为界面破坏.","authors":[{"authorName":"汪澎","id":"366b3604-323d-4f09-8721-b7b20a010c83","originalAuthorName":"汪澎"},{"authorName":"隋刚","id":"9c45d3a6-664b-4ab0-9824-1b5dd46f4e28","originalAuthorName":"隋刚"},{"authorName":"杨小平","id":"02bf26a7-798c-4840-bdd0-88f9887814fa","originalAuthorName":"杨小平"}],"doi":"","fpage":"22","id":"7988be83-9e02-40e7-8dd6-aec51fd43130","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"3c89536b-b281-4396-9a8c-2942d217aa2f","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"cf902797-6b74-4b10-8fea-71462366dff7","keyword":"固化剂","originalKeyword":"固化剂"},{"id":"18afaf86-49e0-47a1-bef8-0fea2b64e009","keyword":"当量","originalKeyword":"当量比"},{"id":"2f3a17ae-1db4-45f9-8880-ce157ed82e4a","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"8531ca39-6e66-4633-83fd-47be7d373796","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"blgfhcl201302005","title":"环氧树脂与胺类固化剂当量比对固化物性能的影响","volume":"","year":"2013"},{"abstractinfo":"本文研究了氢/空气预混火焰在半开口管道中的火焰加速现象和压力发展过程.结果表明,重复布置的障碍物对火焰速度和压力提升产生显著的影响.火焰传播状态随着氢气当量的变化而发生改变,在氢气当量约为0.34时,火焰速度出现第一次跃变;随着氢气当量进一步提高,火焰速度发生第二次跃变,即由爆燃转为爆轰.发生爆轰时氢气当量的范围随着阻塞的不同而发生变化.","authors":[{"authorName":"余立新","id":"6ce7cfe1-470b-42ae-9d8f-5617b988e96e","originalAuthorName":"余立新"},{"authorName":"孙文超","id":"43c4200b-256f-44d1-a7bd-b62064a151b6","originalAuthorName":"孙文超"},{"authorName":"吴承康","id":"19721726-dd00-4f9a-a60b-dda0826d8cc3","originalAuthorName":"吴承康"}],"doi":"","fpage":"637","id":"c802fb06-5c03-4978-b8af-8c0c4f65bab6","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"64345758-c8a8-43db-9d70-b0a718dbd1b8","keyword":"氢/空气混合物","originalKeyword":"氢/空气混合物"},{"id":"da43f704-aaf4-4fed-a344-02c265a80d20","keyword":"当量","originalKeyword":"当量比"},{"id":"8f18827d-3059-40bb-bb84-df1a4b6a1459","keyword":"障碍物阻塞","originalKeyword":"障碍物阻塞比"},{"id":"8b2a75a5-63af-4f58-a765-055435d66230","keyword":"火焰加速","originalKeyword":"火焰加速"},{"id":"71c784ea-34b0-4ed6-882c-2bee12f62def","keyword":"压力提升","originalKeyword":"压力提升"}],"language":"zh","publisherId":"gcrwlxb200105032","title":"半开口管道中的氢/空气火焰加速和压力发展过程","volume":"22","year":"2001"},{"abstractinfo":"本文采用基于详细化学反应机理的化学反应网络模型分析了航空发动机燃油径向分级多点喷射低污染燃烧室的NO_x排放特性。该分级燃烧室不同于传统燃烧室,头部由值班区和主燃区两个不同的燃烧区域,根据CFD得到的流场特性和当量的分布特性对燃烧室进行分区构建化学反应器网络模型,研究了值班级当量以及值班级和主燃级两级供油比例对排放的影响。同时,还分析了空气进口温度对NO_x排放的影响。得到了较为合理的变化趋势,为低污染燃烧室的初步设计提供了有益的指导。","authors":[{"authorName":"刘富强","id":"bb3697fd-aeb0-4df6-86dc-ace97dcff340","originalAuthorName":"刘富强"},{"authorName":"杨金虎","id":"088229de-43e0-4587-bb66-479ec36e2a3a","originalAuthorName":"杨金虎"},{"authorName":"刘存喜","id":"7b148b4d-ea3b-429b-bbd2-d42d973003ff","originalAuthorName":"刘存喜"},{"authorName":"穆勇","id":"1c18a623-4543-4f44-8764-045f0b68f116","originalAuthorName":"穆勇"},{"authorName":"徐纲","id":"6a9c3c96-63ef-4ffa-a343-10020227225c","originalAuthorName":"徐纲"},{"authorName":"朱俊强","id":"4bbadf4c-4b6d-40d9-bbb7-9bb593682a7d","originalAuthorName":"朱俊强"}],"doi":"","fpage":"537","id":"374d1b3a-07b7-4ea4-8aef-a8261ce4d674","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"f248ca29-28e6-4144-8bf4-9cd0e18d7067","keyword":"化学反应器网络模型","originalKeyword":"化学反应器网络模型"},{"id":"a5c1d40e-ada9-413a-8356-d33821272816","keyword":"燃油分级","originalKeyword":"燃油分级"},{"id":"9c0fa587-d1f0-45b6-b531-3af2f0564fc0","keyword":"多点喷射","originalKeyword":"多点喷射"},{"id":"1d10372e-0e20-4e20-a11f-5682f6165010","keyword":"NO_x排放","originalKeyword":"NO_x排放"},{"id":"acb92318-e309-49dd-814d-4f28e0af2ec9","keyword":"当量","originalKeyword":"当量比"}],"language":"zh","publisherId":"gcrwlxb201203044","title":"燃油分级多点喷射低污染燃烧室的化学反应网络模型分析","volume":"33","year":"2012"},{"abstractinfo":"本文基于热流量法搭建了层流火焰速度测量平台,通过测量甲烷的绝热层流火焰速度对平台的可靠性进行了验证.然后运用热流量法对15%H2-15%CO-70%N2和12%H2-19%CO-1 3.2%CO2-5.8%CH4-50%N2两种组分合成气的绝热层流火焰速度进行了精确测量,并通过Chemkin 4.1软件采用GRI-Mech 3.0,USC Mech Ⅱ和Davis H2/CO三种机理对试验工况进行了计算.实验数据与计算结果基本一致,尤其与GRI-Mech 3.0机理的计算结果较好地吻合.本文还对实验误差进行了误差分析,对两种合成气的平均测量误差分别达到1.107 cm/s和0.88 cm/s.","authors":[{"authorName":"梁晓晔","id":"48ffa6df-4639-4c09-9463-17c638b46abb","originalAuthorName":"梁晓晔"},{"authorName":"翁武斌","id":"cf47f87f-a333-456d-aea3-8f4e0a2b0326","originalAuthorName":"翁武斌"},{"authorName":"王智化","id":"bc5a6e64-6e40-4b02-be9c-c01fbf22c847","originalAuthorName":"王智化"},{"authorName":"朱燕群","id":"b1f512c6-2be6-40aa-a3e9-c651c16ff0fd","originalAuthorName":"朱燕群"},{"authorName":"周志军","id":"94004365-cea7-405c-9bc2-3362b20f08a7","originalAuthorName":"周志军"},{"authorName":"周俊虎","id":"f31a10e2-1d86-45cd-b852-d06c8dbbbf63","originalAuthorName":"周俊虎"},{"authorName":"岑可法","id":"63e90fbd-6fde-43b3-a64b-9df52b89a19c","originalAuthorName":"岑可法"}],"doi":"","fpage":"1370","id":"7dba886b-46a5-477f-862b-1ae9f6b6d7bd","issue":"7","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1ab0a267-d323-416d-9a5b-ed1b7885b150","keyword":"热流量法","originalKeyword":"热流量法"},{"id":"9f7f77ab-3c82-48f4-8e60-b7f90a073a6c","keyword":"合成气","originalKeyword":"合成气"},{"id":"5dc9681b-c38c-4bb0-9d39-645c2322978e","keyword":"绝热层流火焰速度","originalKeyword":"绝热层流火焰速度"},{"id":"24b9e90d-a7aa-4bf0-8674-7d8f0796562b","keyword":"误差分析","originalKeyword":"误差分析"},{"id":"010a319f-60b8-463a-a340-57d348b7be1f","keyword":"当量","originalKeyword":"当量比"}],"language":"zh","publisherId":"gcrwlxb201307041","title":"合成气预混层流火焰速度的热流量法测量","volume":"34","year":"2013"},{"abstractinfo":"采用真空感应炉熔炼不同镍铬当量的超超临界转子用钢锭,分析镍铬当量比对δ-铁素体析出的影响.研究表明:标准成分范围内铸锭中析出的δ-铁素体是由于冷却过程中非平衡相变引起的,高镍铬当量的铸锭偏析较轻,δ-Fe呈小块状分布,通过再结晶和热挤压可以被完全吸收;低镍铬当量的铸锭偏析加重,δ-铁素体含量明显增多,呈网状分布,热加工后呈链条状分布在晶界位置,很难将其完全消除;随镍铬当量的提高,δ-铁素体含量减少,合金冲击韧性明显改善.","authors":[{"authorName":"赵美兰","id":"deb3dc95-9c83-4de4-b05c-13a53893cde1","originalAuthorName":"赵美兰"},{"authorName":"金嘉瑜","id":"da08343b-8f30-411b-aadd-3ae77756f02b","originalAuthorName":"金嘉瑜"},{"authorName":"张明珠","id":"cf36f3cb-998f-4798-a204-4576805f4ead","originalAuthorName":"张明珠"},{"authorName":"张国利","id":"0f746b03-8f67-431a-bee3-834673e678e1","originalAuthorName":"张国利"},{"authorName":"樊翔宇","id":"026eb100-64ac-4144-a86d-b26f277d24cc","originalAuthorName":"樊翔宇"}],"doi":"","fpage":"61","id":"979d34a9-4de3-4907-b946-8629dfcf627f","issue":"5","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6c61e34b-3265-4aa6-8feb-49f29dc11bfd","keyword":"超超临界转子用钢","originalKeyword":"超超临界转子用钢"},{"id":"8a799694-7054-4f8b-a5e7-b13dd1694100","keyword":"镍铬当量","originalKeyword":"镍铬当量比"},{"id":"6be96ff9-4bb4-414d-a1b2-1b22e5a48d20","keyword":"δ-铁素体","originalKeyword":"δ-铁素体"},{"id":"cf0fa399-0b9f-4ffc-8188-d260e28fceb9","keyword":"强韧性","originalKeyword":"强韧性"}],"language":"zh","publisherId":"gtyjxb201405012","title":"超超临界转子用钢的镍铬当量比对δ-铁素体析出的影响","volume":"26","year":"2014"},{"abstractinfo":"研究了在不同胺/环氧当量时环氧树脂的固化放热曲线,测定了树脂的固化度、密度和玻璃化温度Tg.实验发现随当量的增加,固化度和密度增加,在等当点时,其Tg最高;密度和固化程度随当量的变化可运用组装密度的概念很好地解释,而Tg的不同与交联点的结构形式有关.","authors":[{"authorName":"王德生","id":"ab77fa76-c88e-4753-85cb-50b97f2e3d54","originalAuthorName":"王德生"},{"authorName":"刘庆峰","id":"f7b05dec-5389-4015-9cad-2ea7015203ac","originalAuthorName":"刘庆峰"},{"authorName":"陈维","id":"0a58f10a-802b-4512-8bc2-b8bf1a8076f3","originalAuthorName":"陈维"},{"authorName":"刘斌","id":"aac56ae2-3cb5-42d9-ac01-5543c4cda00b","originalAuthorName":"刘斌"},{"authorName":"陈寿田","id":"d6814833-0c15-4e55-9a7b-51dcaac03edd","originalAuthorName":"陈寿田"}],"doi":"","fpage":"142","id":"412c93a4-228e-487e-bb0c-4bdf34934e7d","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"5994e2a9-d323-42e8-893a-9535f5c5db59","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"f2c7b94a-8dd3-4a31-ab57-1b42c7f1316f","keyword":"间苯二胺","originalKeyword":"间苯二胺"},{"id":"2d423e10-beb5-4d72-baef-bd13efdf700b","keyword":"固化","originalKeyword":"固化"},{"id":"0779891a-4e81-424b-bc99-b5a8d170c287","keyword":"组装密度","originalKeyword":"组装密度"}],"language":"zh","publisherId":"gfzclkxygc200104037","title":"胺/环氧当量比对固化环氧树脂性能的影响","volume":"17","year":"2001"},{"abstractinfo":"导热对研究冷刀治疗的传热过程很重要.为了对冷刀治疗热过程有更好的理解,本文研究了生物组织的当量导热系数以及相关因素对当量导热系数的影响.将生物组织视为多孔介质,包括血管和正常组织两部分.建立了血管的分形模型,通过分形维的概念得到血管树的当量导热系数,采用盒计数法得到生物组织的当量导热系数.研究结果表明血管树的形状对组织的当量导热系数有很大的影响.","authors":[{"authorName":"施娟","id":"6dda6dff-81c3-4a87-8ee2-40539f572775","originalAuthorName":"施娟"},{"authorName":"陈振乾","id":"ab144f93-72a2-4b46-886d-cff8d1096213","originalAuthorName":"陈振乾"},{"authorName":"施明恒","id":"f1b67c17-946b-4978-82bf-5f9ebb7dfcbd","originalAuthorName":"施明恒"}],"doi":"","fpage":"1755","id":"b07bb1f6-2a99-4b72-9b84-a33e9709aaa1","issue":"10","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"3c927b6d-72be-47ee-b784-631778687fed","keyword":"生物组织","originalKeyword":"生物组织"},{"id":"8bd5b112-7780-4e68-8740-aaa4fbf47295","keyword":"分形","originalKeyword":"分形"},{"id":"2d170b87-2e10-4ba4-b9b4-1275871d475d","keyword":"当量导热系数","originalKeyword":"当量导热系数"},{"id":"dc68fa6f-7e6d-48ea-b93c-62c109bf0f11","keyword":"多孔介质","originalKeyword":"多孔介质"}],"language":"zh","publisherId":"gcrwlxb200910039","title":"生物组织的当量导热系数分析","volume":"30","year":"2009"}],"totalpage":1962,"totalrecord":19620}