{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用化学沉积技术对由水溶液络合沉淀法合成的氢氧化镍粉末进行了表面包覆Co-Zn改性处理,利用扫描电子显微镜分析、比表面积测量、X-射线光电子能谱及原子吸收光谱等对处理前后氢氧化镍粉末的表面形貌、微晶结构、比表面积、元素化学态及镀层组成等进行了表征和研究.结果表明,Co-Zn合金镀层可以均匀包覆在氢氧化镍颗粒表面,氢氧化镍经化学镀处理后其表面微观组织形貌发生了明显变化.化学镀表面改性使氢氧化镍粉末的比表面积有所降低,镀层中的Co、Zn元素均以氧化态形式存在.","authors":[{"authorName":"宋全生","id":"2c2e0eba-bfd9-4844-ae14-df52529708df","originalAuthorName":"宋全生"},{"authorName":"唐致远","id":"3c24df55-7b7d-4a34-8fd1-df272a95143a","originalAuthorName":"唐致远"},{"authorName":"郭鹤桐","id":"ea9fcf09-3316-404b-b423-740717da10e8","originalAuthorName":"郭鹤桐"}],"doi":"10.3969/j.issn.1001-3849.2004.03.001","fpage":"1","id":"75f1fdaf-c592-44b2-bf7a-0287753104fc","issue":"3","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"2975d99c-b847-4506-8cf9-91af8ec95a47","keyword":"化学沉积","originalKeyword":"化学沉积"},{"id":"c58981b4-02d0-4d86-adac-93be3e728fde","keyword":"氢氧化镍粉末","originalKeyword":"氢氧化镍粉末"},{"id":"51dc3f2f-4e6b-4832-ad0e-19a699c8a9fa","keyword":"Co-Zn合金镀层","originalKeyword":"Co-Zn合金镀层"},{"id":"589f4bcc-7ad9-478d-8a53-451b12eb6d54","keyword":"元素化学态","originalKeyword":"元素化学态"}],"language":"zh","publisherId":"ddjs200403001","title":"氢氧化镍粉末的化学镀Co-Zn合金表面改性研究","volume":"26","year":"2004"},{"abstractinfo":"给出了不需用PdCl2活化,采用连续化方式在球形Ni(OH)2表面化学镀钴和钴锌合金的工艺条件.研究了镀液pH值、钴盐浓度和化学镀的反应温度对产物的堆积密度以及结构的影响.结果表明,析氢反应随着整个化学镀过程,有利于生成多孔化学镀层,并能够有效地提高材料的电化学性能.","authors":[{"authorName":"唐致远","id":"d61eeb79-e9e7-4681-9ce2-f674a2b72510","originalAuthorName":"唐致远"},{"authorName":"刘建华","id":"660cd474-32cc-49c9-b861-8e142873ea6e","originalAuthorName":"刘建华"},{"authorName":"赵秉英","id":"df65ae63-264e-413c-b704-70b843cd40b2","originalAuthorName":"赵秉英"},{"authorName":"杨敬武","id":"eb6ef197-eec5-4cce-a6eb-38e8e8827480","originalAuthorName":"杨敬武"}],"doi":"10.3969/j.issn.1001-3849.2000.04.001","fpage":"1","id":"0bd35d13-1a0b-4fee-a1d5-28a0e0f5287e","issue":"4","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"eadbd896-4280-4c14-99af-81069a9a7615","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"2157ca93-5fc0-4661-8731-4bd326867144","keyword":"球形Ni(OH)2","originalKeyword":"球形Ni(OH)2"},{"id":"7798dca8-4b6c-4ade-8536-0739f2296c0f","keyword":"堆积密度","originalKeyword":"堆积密度"},{"id":"40afa597-220f-4bce-958e-0172ac09ad8e","keyword":"表面形貌","originalKeyword":"表面形貌"}],"language":"zh","publisherId":"ddjs200004001","title":"球形Ni(OH)2化学镀Co、Zn和Co-Zn合金工艺的研究","volume":"22","year":"2000"},{"abstractinfo":"首先以Fe+ Fe2O3+ ZnO+Co+BaCO3为反应体系,KClO4为营养剂制备团聚粉.用自反应淬熄法并结合热处理工艺制备了Co-Zn掺杂的W型钡铁氧体空心陶瓷微珠.接着通过SEM、EDS、XRD等手段,表征了空心陶瓷微珠的形貌、成分和结构.最后通过网络矢量分析仪测试电磁参数并分析其吸波性能.实验结果表明:自反应淬熄法及1300℃热处理后得到的产物基本为单一的六角片状Ba(Zn0.7Co0.3)2Fe16O27空心陶瓷微珠.空心陶瓷微珠在3~5 GHz和9~12 GHz表现出明显的磁损耗峰,当样品的厚度为3 mm时,在10.6 GHz处吸收峰值最低为-14dB,小于-10 dB的有效吸收带宽为2 GHz,Co-Zn掺杂的W型钡铁氧体空心陶瓷微珠在实现轻质化的同时具有良好的微波吸收性能与应用前景.","authors":[{"authorName":"俞梁","id":"d326a8b2-f438-4407-9855-8a738f1ce1c7","originalAuthorName":"俞梁"},{"authorName":"王建江","id":"fc2b5612-46c9-4b51-9080-400ef1e8604c","originalAuthorName":"王建江"},{"authorName":"许宝才","id":"4ec389d7-751d-4ead-984a-d244b0b448ac","originalAuthorName":"许宝才"},{"authorName":"李志广","id":"4744bb6b-b316-4dd8-abd8-2dffa97b4135","originalAuthorName":"李志广"},{"authorName":"高海涛","id":"1e5c3bf9-3bbd-4aa5-9a16-e4bf30b6621c","originalAuthorName":"高海涛"}],"doi":"","fpage":"2490","id":"d3c6fc04-24c0-4909-b420-3ddb48585503","issue":"9","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"d486206b-d746-470b-bc18-dd43dc3c881f","keyword":"W型钡铁氧体","originalKeyword":"W型钡铁氧体"},{"id":"0950b036-ee6c-4ca1-b50e-3b36a3aecfa0","keyword":"自反应淬熄法","originalKeyword":"自反应淬熄法"},{"id":"2edf7f64-c0ee-4e74-a881-28b02b20a046","keyword":"空心陶瓷微珠","originalKeyword":"空心陶瓷微珠"},{"id":"cd06f5e5-d020-4a26-b1b3-e3d75b9de279","keyword":"吸波性能","originalKeyword":"吸波性能"}],"language":"zh","publisherId":"rgjtxb98201509031","title":"Co-Zn掺杂的W型钡铁氧体空心陶瓷微珠吸波材料的制备与性能研究","volume":"44","year":"2015"},{"abstractinfo":"利用X-射线衍射和扫描电镜技术研究了纯Zn和Zn-Fe合金(含Fe0.2~0.7wt%)镀层的结构,发现Zn-Fe合金镀层的晶粒较纯Zn镀层细小,晶体排布更为致密;利用电化学综合测试仪研究了纯Zn和Zn-Fe合金镀层的极化电阻和腐蚀电流,结果表明Zn-Fe合金镀层的极化电阻更高而腐蚀电流较纯Zn镀层显著减小。","authors":[{"authorName":"褚德威","id":"db43d282-da7a-4a68-9a99-b6d10655e539","originalAuthorName":"褚德威"},{"authorName":"全成军","id":"d78316ab-fd57-4aca-ac2a-727802ebaa45","originalAuthorName":"全成军"},{"authorName":"韩玉华","id":"fc70dba3-3080-469b-8b37-cddfabc54d80","originalAuthorName":"韩玉华"},{"authorName":"徐明","id":"35491223-e236-4199-9441-3f67787be4cc","originalAuthorName":"徐明"}],"categoryName":"|","doi":"","fpage":"39","id":"9e08d1c8-921f-4d96-9b44-a4fb020cac11","issue":"2","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"b2da122c-e507-46cb-8709-a548bf069d46","keyword":"电镀","originalKeyword":"电镀"},{"id":"1e01490c-ebba-41bb-ba5e-7c0f8c8d1f35","keyword":"null","originalKeyword":"null"},{"id":"946d7232-5100-42cf-b892-694bf8835bb0","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_1996_2_4","title":"Zn─Fe合金镀层耐蚀性能研究","volume":"8","year":"1996"},{"abstractinfo":"为探索新型的Co-Zn合金电镀工艺,在氯化胆碱-尿素离子液体中电沉积了钴锌合金镀层,探讨了阴极电位、Co(Ⅱ)/Zn(Ⅱ)浓度比、温度及时间等工艺参数对电沉积的影响,并对合金镀层性能进行了测试.结果表明:在氯化胆碱-尿素离子液体中,控制体系的组成和沉积条件,可得到表面均匀、附着力强、有金属光泽的非晶态Co-Zn合金镀层,其中Co的质量分数可达90%.","authors":[{"authorName":"王小娟","id":"80fc9671-9d20-40bd-a140-9b6ede438c4c","originalAuthorName":"王小娟"},{"authorName":"李慧","id":"5f7c0a91-8c2b-4ceb-be62-2cb1a3047f4a","originalAuthorName":"李慧"},{"authorName":"王娇","id":"ac4d724d-9366-4840-aa03-35dd1e5dcd1d","originalAuthorName":"王娇"},{"authorName":"付雄之","id":"11072162-2ceb-4acb-88da-329991280eec","originalAuthorName":"付雄之"},{"authorName":"顾建胜","id":"0e98057a-dbf9-487c-a340-694e1b0bb2e3","originalAuthorName":"顾建胜"}],"doi":"","fpage":"30","id":"6ca97a2e-af52-4841-839c-8a17382d958b","issue":"3","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"08db5f74-c162-4f8a-861a-fc660526c3f3","keyword":"氯化胆碱-尿素离子液体","originalKeyword":"氯化胆碱-尿素离子液体"},{"id":"dac04d6c-3216-48cd-8e5e-96d3415dfad3","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"07d28a5c-4867-41bb-ba19-6b4aaadc8f4f","keyword":"钴锌合金","originalKeyword":"钴锌合金"},{"id":"f2195db7-0e7c-4093-9dc9-dcb0652c7f41","keyword":"非晶态","originalKeyword":"非晶态"}],"language":"zh","publisherId":"clbh201003010","title":"钴锌合金在氯化胆碱-尿素离子液体中的电沉积行为","volume":"43","year":"2010"},{"abstractinfo":"用纳米复合电沉积技术在低碳钢表面制备了Zn-Co-TiO2纳米复合镀层。用SEM、EDS和XRD等技术手段对样品进行了分析与表征。结果表明,镀层中TiO2的含量约为12.63%,并均匀分散在镀层中,可以起到细化Zn-Co合金镀层晶粒的作用,并使Zn-Co合金镀层的耐蚀性能得到提高。用紫外光辅助照射电极电位监测方法研究Zn-Co-TiO2纳米复合镀层光生阴极保护特性。结果表明,在紫外光照射下,镀层的电极电位负移,说明镀层具有光生阴极保护性能;关闭紫外光灯后,其电极电位正移,但仍低于镀层未光照前的电极电位。在400℃下氧化6 h后镀层表面生成了ZnO薄膜,其与TiO2的协同作用可进一步提高镀层的光生阴极保护性能。","authors":[{"authorName":"万冰华","id":"06653379-081d-4b33-a30c-5b5a5cf78a1d","originalAuthorName":"万冰华"},{"authorName":"费敬银","id":"914b4213-efe8-4b8b-80bc-06cefd2522b3","originalAuthorName":"费敬银"},{"authorName":"冯光勇","id":"8704108d-b910-4273-84cd-10124499d952","originalAuthorName":"冯光勇"},{"authorName":"张午花","id":"1edeb49b-3aeb-486b-b7dc-772654f793bd","originalAuthorName":"张午花"},{"authorName":"王少兰","id":"27295505-a0c5-43a5-adb0-2a2e579bde4c","originalAuthorName":"王少兰"}],"categoryName":"|","doi":"","fpage":"327","id":"9fbc071f-5639-4c24-a4a4-5b7c8ab02a76","issue":"4","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"88932aaf-0da9-416c-8203-f620df06167a","keyword":"光生阴极保护","originalKeyword":"光生阴极保护"},{"id":"07181063-2338-40e8-8dde-d1771d65c9f4","keyword":"Zn-Co alloy coating","originalKeyword":"Zn-Co alloy coating"},{"id":"37bc0df0-9848-444a-bd1c-21b71dbc15a9","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"d74c5c37-ba19-4bca-b2c4-36beef6419c9","keyword":"electrodeposition","originalKeyword":"electrodeposition"},{"id":"bdd38f29-5099-4910-8df4-7cc79aa0c76b","keyword":"corrosion resistance","originalKeyword":"corrosion resistance"}],"language":"zh","publisherId":"1005-4537_2012_4_11","title":"Zn-Co-TiO2纳米复合镀层的光生阴极保护特性","volume":"32","year":"2012"},{"abstractinfo":"利用纳米复合电沉积方法在低碳钢基体上制备了(Zn-Co)-TiO2纳米复合镀层.分析了镀液中纳米TiO2含量、表面活性剂十六烷基三甲基溴化铵质量浓度、电流密度以及温度对镀层中Co、纳米TiO2含量的影响,得出制备(Zn-Co)-TiO2纳米复合镀层的最优工艺条件:60g/L纳米TiO2、1.0g/L表面活性剂十六烷基三甲基溴化铵、Jk为4A/dm2、θ为55~60℃.通过扫描电镜、极化曲线对镀层的形貌特征及耐蚀性能进行了分析.结果表明,纳米复合镀层表面完整,没有明显的缺陷;TiO2均匀地分布在Zn-Co合金镀层中,进一步提高了镀层的耐蚀性能.","authors":[{"authorName":"万冰华","id":"fcf63e03-78c0-452d-833f-2d785936d01f","originalAuthorName":"万冰华"},{"authorName":"费敬银","id":"dc7e07db-a9b1-49c7-a28b-571714920bf8","originalAuthorName":"费敬银"},{"authorName":"宁广西","id":"736c02d2-58c7-4f7a-bfe9-98853049987f","originalAuthorName":"宁广西"},{"authorName":"杨军","id":"dd9b5aa0-c19d-4dac-bcdf-5281a8d18351","originalAuthorName":"杨军"}],"doi":"10.3969/j.issn.1001-3849.2014.05.003","fpage":"9","id":"39fe34db-d24c-41dc-8f96-c5f0b268020b","issue":"5","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"8527d250-46ba-4728-9529-803bb48f75b3","keyword":"(Zn-Co)-TiO2纳米复合镀层","originalKeyword":"(Zn-Co)-TiO2纳米复合镀层"},{"id":"e3ae7137-e205-4748-bec2-47f9a3c7848e","keyword":"Zn-Co合金","originalKeyword":"Zn-Co合金"},{"id":"e14f80e6-6e2c-41d5-9151-7be7193e940f","keyword":"纳米TiO2","originalKeyword":"纳米TiO2"},{"id":"8fda80a7-419f-42de-b473-612899e4d9e6","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"ddjs201405003","title":"(Zn-Co)-TiO2纳米复合镀层的制备及耐蚀性能的研究","volume":"36","year":"2014"},{"abstractinfo":"在碱性锌酸盐镀锌液中加入氧化铝和自制添加剂,获得了光亮Zn-Al合金镀层.采用中性盐雾实验、5%氯化钠溶液浸泡实验、电偶腐蚀实验、循环伏安曲线图和Rp-t曲线对Zn和Zn-Al合金的耐蚀性进行了探讨,结果表明,Zn-Al合金镀层的耐蚀性优于锌镀层的耐蚀性,可用作钢铁件高耐蚀性镀层.","authors":[{"authorName":"龙有前","id":"4a1091d1-3a1e-4b72-bef5-de98166c534e","originalAuthorName":"龙有前"},{"authorName":"肖鑫","id":"acb576a1-bbb3-41cb-868e-a8657c107cc4","originalAuthorName":"肖鑫"},{"authorName":"钟萍","id":"6dc4f84b-5d7a-41b9-a886-828257cda87e","originalAuthorName":"钟萍"},{"authorName":"雷慧凌","id":"cce2befb-8cca-400c-98b6-5eff20d6b17e","originalAuthorName":"雷慧凌"},{"authorName":"李洪","id":"5634dc82-b635-41f6-bc64-4af0ec266641","originalAuthorName":"李洪"}],"doi":"10.3969/j.issn.1002-6495.2006.03.018","fpage":"217","id":"7b13084a-bca8-40e2-935e-9f39e3b82a7a","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"160d7b63-19ee-4fae-b736-a766a2c003f7","keyword":"Zn-Al合金镀层","originalKeyword":"Zn-Al合金镀层"},{"id":"f0e6824e-ebd3-4e9e-829b-6b324e505b73","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"891c802e-8257-4656-97e7-56282769e9b5","keyword":"电化学腐蚀参数","originalKeyword":"电化学腐蚀参数"}],"language":"zh","publisherId":"fskxyfhjs200603018","title":"Zn-Al合金镀层耐蚀性研究","volume":"18","year":"2006"},{"abstractinfo":"在碱性锌酸盐镀锌液中加入氧化铝和自制添加剂,获得了光亮Zn-Al合金镀层.采用中性盐雾实验、5%氯化钠溶液浸泡实验、电偶腐蚀实验、循环伏安曲线图和Rp-t曲线对Zn和Zn-Al合金的耐蚀性进行了探讨,结果表明,ZnAl合金镀层的耐蚀性优于锌镀层的耐蚀性,可用作钢铁件高耐蚀性镀层.","authors":[{"authorName":"龙有前","id":"6cf89d20-3dca-4843-8745-873a624045d9","originalAuthorName":"龙有前"},{"authorName":"肖鑫","id":"f7f02575-bfe9-47c1-a81e-a2b2c0a74ba0","originalAuthorName":"肖鑫"},{"authorName":"钟萍","id":"6413a6b2-02fb-47ca-b817-eb04313e9f0c","originalAuthorName":"钟萍"},{"authorName":"雷慧凌","id":"8e43f529-a1f1-4ab6-bee0-4e15e1d767d7","originalAuthorName":"雷慧凌"},{"authorName":"李洪","id":"d44994ba-8681-4d2b-83e9-e5ab420be85e","originalAuthorName":"李洪"}],"categoryName":"|","doi":"","fpage":"217","id":"30afbdf2-509a-4bf0-ba01-3c482224fc0d","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"d0f3ddaf-34f4-40cc-a4da-b1bfeab31480","keyword":"Zn-Al合金镀层","originalKeyword":"Zn-Al合金镀层"},{"id":"28830edc-e698-418e-a7ab-81ea8c284368","keyword":"null","originalKeyword":"null"},{"id":"cfb2f3e3-293e-41c6-aaba-59f532daf5ff","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2006_3_19","title":"Zn-Al合金镀层耐蚀性研究","volume":"18","year":"2006"},{"abstractinfo":"采用电沉积方法从碱性镀液中制备γ相Zn-Ni合金镀层,应用扫描电子显微镜、X-射线衍射仪、电化学测量技术对Zn-Ni合金镀层的微观结构和耐蚀性能进行了研究.结果表明,Ni-Zn合金镀层的腐蚀性与其微结构密切相关.Zn-Ni合金镀层的晶型为γ相,合金镀层中镍和锌的质量分数分别为15.98%和84.02%;锌-镍合金镀层中原子堆积方式为正四面体形.在5%氯化钠溶液中,γ相Zn-Ni合金镀层与锌镀层的电化学测试结果表明,在0-10Hz低频率区,γ-相Zn-Ni合金镀层的交流阻抗谱的实部值为镀锌层的7.2倍;腐蚀电位比锌层增加了0.1279V,镀锌层的Lo.是γ相Zn-Ni合金镀层的5.78倍.","authors":[{"authorName":"郑凯","id":"46de0d1b-cf93-4b10-b860-80b2c5abb1a5","originalAuthorName":"郑凯"},{"authorName":"吴诗雨","id":"6b72a8c7-349b-44d0-9f5f-e4bbae517fbb","originalAuthorName":"吴诗雨"},{"authorName":"季仁杰","id":"1e7b8561-e598-4b7b-ba5e-8dfb0084e5ab","originalAuthorName":"季仁杰"},{"authorName":"施凯顺","id":"bf4067fc-6aa5-4046-a3a4-e69ecf90f653","originalAuthorName":"施凯顺"},{"authorName":"李红艺","id":"ac1af38d-75c7-4223-a189-d265be0e1327","originalAuthorName":"李红艺"},{"authorName":"张长飞","id":"c5108796-1011-47b5-9db7-b07c6d6a1dc5","originalAuthorName":"张长飞"}],"doi":"10.3969/j.issn.1001-3849.2014.03.001","fpage":"1","id":"1d6a45c2-1a37-445f-b0b3-4bef7a4ddf78","issue":"3","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"49aca535-c2b8-4d4d-aef8-f033abca5421","keyword":"γ相Zn-Ni合金镀层","originalKeyword":"γ相Zn-Ni合金镀层"},{"id":"36bdb81e-e905-4f60-a9ae-98ac94298c8b","keyword":"耐蚀性能","originalKeyword":"耐蚀性能"},{"id":"25af716e-eb37-4948-b74e-4245afa709cf","keyword":"微结构","originalKeyword":"微结构"},{"id":"6d74446e-8bc8-4657-924e-437de6f7166b","keyword":"交流阻抗谱","originalKeyword":"交流阻抗谱"}],"language":"zh","publisherId":"ddjs201403001","title":"γ相Zn-Ni合金镀层结构及性能分析","volume":"36","year":"2014"}],"totalpage":5307,"totalrecord":53061}