{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"内切轧制是新的高温超导Bi2223/Ag带材加工方法.本文采用内切轧制进行高温超导Bi2223/Ag多芯带材加工实验,研究不同压下率(εh)的中间形变对带材组织、结构和性能的影响.研究结果表明,内切轧制中带材的形变属于两向延伸、一向压缩形变,其宽展延伸十分明显,随εh增加而增大;XRD分析结果表明,内切轧制中εh变化对带材相组成、Bi2223相含量和织构度影响不显著;SEM观察和Ic测试表明,εh的增加使带材致密性增强并提高Ic,但是这种作用一定程度上因银超界面而受到抑制.","authors":[{"authorName":"冯日宝","id":"1b9329a7-64e9-4038-8927-9e0aef7f1460","originalAuthorName":"冯日宝"},{"authorName":"袁冠森","id":"ff68708d-301d-4851-9f71-56a71b99fe84","originalAuthorName":"袁冠森"},{"authorName":"段镇忠","id":"537d0e8a-683f-4824-b6eb-80612ac7a97f","originalAuthorName":"段镇忠"},{"authorName":"李月南","id":"2a664e8b-d67e-4c69-9bc2-1bf5bf413c58","originalAuthorName":"李月南"},{"authorName":"姚永勋","id":"e7e0f19b-d893-47b3-acb0-ba36ac14d433","originalAuthorName":"姚永勋"},{"authorName":"栾文洲","id":"740d2b0b-2ce8-4764-bceb-87611c510511","originalAuthorName":"栾文洲"},{"authorName":"王媛","id":"7138eeb2-9221-45ed-9d8d-3e6e3a2d3b50","originalAuthorName":"王媛"},{"authorName":"杜风贞","id":"bfc756a8-e7ae-43bc-bcab-a45551003582","originalAuthorName":"杜风贞"},{"authorName":"周其","id":"90a81842-5148-4e46-ac1b-3e1817fc6610","originalAuthorName":"周其"},{"authorName":"徐斌","id":"0fc2c9c8-babe-443a-b468-e16cc50f8851","originalAuthorName":"徐斌"},{"authorName":"方媛","id":"f4323fe2-dd11-4ef1-8fcb-c1824934b0d5","originalAuthorName":"方媛"}],"doi":"10.3969/j.issn.1000-3258.2003.z1.009","fpage":"41","id":"706498c8-9ff6-42fe-a7b0-854c5fd5742e","issue":"z1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"2cb8866b-0978-4890-a1c6-1c0dcd373ab6","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"dwwlxb2003z1009","title":"内切轧制形变对Bi2223/Ag多芯带材的影响","volume":"25","year":"2003"},{"abstractinfo":"研究了冷却速率对Tiv2.1Ni04zr0.06CuomCr0.1合金的相结构及电化学性能的影响.XRD、EBI、EDS分析表明,合金主要由V基固溶体主相和以网状分布于主相晶界的Ti2Ni基第二相组成.电化学测试表明,冷却速率较快时合金的最大放电容量、交换电流密度、极限电流密度和循环稳定性都得到提高.而高倍率性能下降是由于在较大的电流密度下快冷样品中第二相催化相在碱液中的溶解析出速率较快造成的.","authors":[{"authorName":"吴怡芳","id":"cd5bb854-9ed2-448a-a400-4e11c7e1f30e","originalAuthorName":"吴怡芳"},{"authorName":"柳永宁","id":"94b95efb-b8ce-4698-894c-d4ef9734842b","originalAuthorName":"柳永宁"},{"authorName":"方建峰","id":"8b11576d-5060-4dfb-9ea0-9d2331a36804","originalAuthorName":"方建峰"},{"authorName":"马晓波","id":"cc2ccd56-0caf-476a-85c3-506c719f67ac","originalAuthorName":"马晓波"},{"authorName":"陈元振","id":"f9de7405-4df2-4747-a8b9-184a0390705e","originalAuthorName":"陈元振"},{"authorName":"刘博","id":"ec1af6d5-ef9b-4aa8-9484-af729e032c29","originalAuthorName":"刘博"},{"authorName":"张玉萍","id":"cbf0a0ef-ec26-4d27-a22d-24c1ef8ea087","originalAuthorName":"张玉萍"},{"authorName":"方媛","id":"92b3eff8-17ab-4d01-b7df-685d56fb16fc","originalAuthorName":"方媛"},{"authorName":"李成山","id":"08632d5f-6f51-4bb4-a642-d0e438cffc35","originalAuthorName":"李成山"},{"authorName":"奚正平","id":"d88927d3-469c-474e-aaf7-5b1d9b7b5326","originalAuthorName":"奚正平"}],"doi":"","fpage":"2237","id":"11cdd7a1-1790-4968-86c1-4b8693796370","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"0e7214ba-4031-43b9-8dff-acf1d8e156ad","keyword":"V基固溶体","originalKeyword":"V基固溶体"},{"id":"396bc29e-2032-4291-9a89-2c2ee9dafa75","keyword":"电化学性能","originalKeyword":"电化学性能"},{"id":"4c906b1d-3e58-47e7-8d64-cd06bfe809e9","keyword":"冷却速率","originalKeyword":"冷却速率"},{"id":"f2972f64-e9cd-4271-94f7-6ba8abbee680","keyword":"储氢合金","originalKeyword":"储氢合金"}],"language":"zh","publisherId":"xyjsclygc201012037","title":"冷却速率对TiV2.1Ni0.4Zr0.06Cu0.03Cr0.1合金相结构及电化学性能的影响","volume":"39","year":"2010"},{"abstractinfo":"测试了不同铱涂覆量的IrO2-Ta2O5钛阳极的表面形貌、强化寿命及析氧极化曲线.结果表明:铱涂覆量5 g/m2和10 g/m2的涂层形貌呈无规则粉状堆积;铱涂覆量达到20 g/m2时,涂层表面出现了枝状结构;铱涂覆量达到30 g/m2时,这种枝状结构已经很明显.IrO2-Ta2O5钛阳极涂层中铱涂覆量在5~30 g/m2范围内,随铱涂覆量的增加,阳极强化寿命增加得较快;当铱涂覆量超过30 g/m2,随铱涂覆量的增加,阳极强化寿命增幅减小.铱涂覆量对IrO2-Ta2O5钛阳极析氧的电催化活性影响不大.","authors":[{"authorName":"张玉萍","id":"d5fdbdcb-ca1d-4c5a-8354-d3969c5f1088","originalAuthorName":"张玉萍"},{"authorName":"武志红","id":"87ba693e-bbed-4550-b2e1-186e0f4566a8","originalAuthorName":"武志红"},{"authorName":"鞠鹤","id":"5a9bcc89-228a-49fa-95e4-629ab8549aa2","originalAuthorName":"鞠鹤"},{"authorName":"蔡天晓","id":"099cec39-9ade-42b3-ba0f-a0fe0988df08","originalAuthorName":"蔡天晓"},{"authorName":"方媛","id":"f040ef43-e20f-4c3e-8d4a-362840560d1c","originalAuthorName":"方媛"}],"doi":"10.3969/j.issn.1001-3660.2010.04.010","fpage":"33","id":"2703a97e-9fcb-44b3-ac7a-c4b58add4677","issue":"4","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"e1cc5324-ddc8-4d21-93bb-cdb04cf265b7","keyword":"IrO2-Ta2O5","originalKeyword":"IrO2-Ta2O5"},{"id":"2835ee1e-024e-4260-b309-111de69130db","keyword":"铱涂覆量","originalKeyword":"铱涂覆量"},{"id":"31a9e59e-108b-420e-b118-df55c921fbf0","keyword":"钛阳极","originalKeyword":"钛阳极"}],"language":"zh","publisherId":"bmjs201004010","title":"铱涂覆量对IrO2-Ta2O5钛阳极性能的影响","volume":"39","year":"2010"},{"abstractinfo":"通过热分解法制备了钌镍氧化物析氢活性阴极,考察了涂液不同金属含量和热氧化温度对活性阴极析氢电位和电极稳定性的影响,研究结果表明:涂液组成中钌掺杂量7%~11%,镍加入量控制在20%~23%为宜,热氧化温度应严格控制在450℃.同时根据涂层结构的表面形貌,分析了涂液元素组成和涂层结构的关系.分析结果表明:在最佳金属配比时,涂层具有疏松的结构,具有最大的比表面积,这种涂层结构明显改善了氧化物涂层的电催化性和电极稳定性.制备的钌镍氧化物析氢活性阴极强化电解质量损失小于11 mg/cm2,能够满足工业上的使用要求.","authors":[{"authorName":"蔡天晓","id":"c270490b-e2ae-471e-aa73-a7360a0af92a","originalAuthorName":"蔡天晓"},{"authorName":"李淑娟","id":"f8a1eb4c-7cc3-426c-9469-fc0284b2c801","originalAuthorName":"李淑娟"},{"authorName":"鞠鹤","id":"a535fd61-085c-4f48-a973-360bf75e8b11","originalAuthorName":"鞠鹤"},{"authorName":"方媛","id":"070f984f-984e-4a31-bb2b-789b97063834","originalAuthorName":"方媛"}],"doi":"10.3969/j.issn.1001-3660.2011.05.025","fpage":"88","id":"2db1855a-012a-4ab2-8bae-ec06b5c8f921","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"65e77da4-1dbe-4165-998b-4b6e6018cf09","keyword":"活性阴极","originalKeyword":"活性阴极"},{"id":"2a7d7e48-cde6-4cc7-b488-00f14704f181","keyword":"电解水","originalKeyword":"电解水"},{"id":"b98d2ded-8a3a-4653-8b19-1c6c24305e94","keyword":"混合金属氧化物","originalKeyword":"混合金属氧化物"},{"id":"fc0a30f8-c284-412a-b8c9-8abc3ef2a0ae","keyword":"镍基材","originalKeyword":"镍基材"}],"language":"zh","publisherId":"bmjs201105025","title":"钌镍氧化物析氢活性阴极的制备工艺研究","volume":"","year":"2011"},{"abstractinfo":"钴的冶炼基本采用湿法冶炼技术, 电沉积钴是湿法冶炼提取钴的重要部分. 研究了电沉积钴用不溶性阳极, 说明了阳极的制备方法, 测试并分析了阳极的强化寿命, 表面形貌及析氧析氯极化曲线, 同时対电极的失效机制进行了分析. 结果表明:添加含铱中间层既保证了钛阳极催化活性, 降低了能耗, 提高了电流效率, 又延长了钛阳极使用寿命. 槽压由以前的3.1 V降到2.5 V, 电流密度由250 A·m~(-2)提高到350 A·m~(-2), 在实际应用中钛阳极使用寿命达到两年.","authors":[{"authorName":"张玉萍","id":"e23dab4e-8d12-4dbf-8d98-8f045b56662f","originalAuthorName":"张玉萍"},{"authorName":"武志红","id":"e0b9e250-0970-48a2-9f4a-ee8449d26d74","originalAuthorName":"武志红"},{"authorName":"鞠鹤","id":"75a07c9a-8235-473e-b1c3-cdea61f0b7e0","originalAuthorName":"鞠鹤"},{"authorName":"蔡天晓","id":"4d7e1694-ab65-4ede-8ac2-6521b86bc7f6","originalAuthorName":"蔡天晓"},{"authorName":"方媛","id":"00867618-a1cf-4368-8de7-e13e2806badb","originalAuthorName":"方媛"},{"authorName":"蔡继东","id":"d577a140-3f79-477f-a419-3a9dc09ce550","originalAuthorName":"蔡继东"}],"doi":"10.3969/j.issn.0258-7076.2009.06.027","fpage":"898","id":"6171bc19-310a-4d1c-9135-d35379e62caa","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"0e9d0388-1886-4e11-bfb2-bd1ddc9bd302","keyword":"湿法冶炼","originalKeyword":"湿法冶炼"},{"id":"49f6b244-37e8-4690-9f39-8eef0d6bb978","keyword":"电沉积钴","originalKeyword":"电沉积钴"},{"id":"cc3cfe31-fbfa-4ce9-b710-11d918210434","keyword":"钛阳极","originalKeyword":"钛阳极"}],"language":"zh","publisherId":"xyjs200906027","title":"湿法冶炼中电沉积钴用钛阳极研究","volume":"33","year":"2009"},{"abstractinfo":"以E44环氧树脂为基料,添加适当的无机填料和T31固化剂,制备环氧树脂隔热涂料.考查了填料量、固化剂用量等参数对涂料性能的影响,探索了固化过程的热特性,确定了涂料的组成与制备的工艺参数.综合比较,填料量为50%,固化剂用量为20%时可获得最佳工艺操作条件及最佳性能的涂料.涂料在常温下的初始黏度为334 Pa·s,在30℃下的凝胶时间为30 min,固化时间为3.5h.该涂料的导热系数为0.095 W/(m·K),玻璃化转变温度为148℃,固化线收缩率为1.332%,剥离力为403.23 kN/m2,与企业现有的聚酰胺涂料相比,该涂料具有更优异的性能.","authors":[{"authorName":"方媛","id":"13e96c1b-9477-45a1-aa92-365c8a378517","originalAuthorName":"方媛"},{"authorName":"魏莉","id":"19d1bb54-6703-4d1f-82c0-5f5710ce1724","originalAuthorName":"魏莉"}],"doi":"","fpage":"23","id":"71707f28-ed2a-48d0-9609-5ad68a7f102d","issue":"4","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"ddfe03ba-df69-4438-9c16-3ac8acff4476","keyword":"E44环氧树脂","originalKeyword":"E44环氧树脂"},{"id":"ab1beeeb-e871-4da9-91f2-2fe17a651ccf","keyword":"隔热涂料","originalKeyword":"隔热涂料"},{"id":"1156c99c-c45d-40bd-8e1e-8b601bf98a7f","keyword":"填料","originalKeyword":"填料"},{"id":"00f08fb9-825e-427a-b19e-cf27ae55d441","keyword":"T31固化剂","originalKeyword":"T31固化剂"}],"language":"zh","publisherId":"tlgy201404005","title":"E44/T31隔热涂料的制备及与聚酰胺涂料的性能比较","volume":"44","year":"2014"},{"abstractinfo":"主要研究了超大比表面积活性炭对柴油中噻吩类硫化物的吸附性能.采用气相色谱-硫化学发光检测器(GC-SCD)分析了柴油中噻吩类硫化物的分布和浓度,测定了柴油中噻吩类硫化物在超大比表面积活性炭固定床层的吸附透过曲线,并探讨了吸附温度、床层填充高度及液相流速等对其吸附性能的影响.结果表明,柴油中噻吩类硫化物主要有苯并噻吩(BT)及其烷基衍生物(BT alkylated derivatives)和二苯并噻吩(DBT)及其烷基衍生物(DBT alkylated derivatives);活性炭床层吸附温度、填充高度和液相流速对固定床吸附透过时间均有影响.活性炭对柴油中噻吩类硫化物的吸附选择性为:BT<BT alkylated derivatives<DBT<DBT alkylated derivatives;在最佳吸附条件下,每克超大比表面积活性炭能把5ml初始硫浓度为1200μg/g的柴油净化至硫含量<5μg/g,达到\"零硫\"标准,此时吸附剂的工作容量达5.04mg/g.超大比表面积活性炭对柴油中大分子噻吩类硫化物具有较强的吸附性能.","authors":[{"authorName":"夏启斌","id":"6e5e3b16-2292-48d2-8bc0-7346fac8521d","originalAuthorName":"夏启斌"},{"authorName":"余谟鑫","id":"e52c9e1d-e146-4dfe-a166-cabcd3049a9e","originalAuthorName":"余谟鑫"},{"authorName":"姬乔娜","id":"c3aec0e2-f899-40c7-b35f-db8437154730","originalAuthorName":"姬乔娜"},{"authorName":"方媛","id":"a8da2434-9d8a-422f-9cc4-af33603315ba","originalAuthorName":"方媛"},{"authorName":"李忠","id":"16fabd1e-ae2e-4cf9-b47d-afe20788b14d","originalAuthorName":"李忠"}],"doi":"","fpage":"1730","id":"dd5041f5-2c6e-4e11-b4d8-86ef0c3c8796","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b26cc623-66e3-453b-99b5-4d1337bfc286","keyword":"活性炭","originalKeyword":"活性炭"},{"id":"8347d746-14bd-4622-a041-639606e9a180","keyword":"柴油","originalKeyword":"柴油"},{"id":"310a91ea-25ea-4053-ad84-cdba2ec0c371","keyword":"脱硫","originalKeyword":"脱硫"},{"id":"2b20144a-d4e0-44b8-ba98-1231f1134a36","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"gncl200910041","title":"超大比表面积活性炭对柴油中噻吩类硫化物的吸附性能","volume":"40","year":"2009"},{"abstractinfo":"综述了日本稀土纳米技术研究、开发及市场状况.日本每年以3~5亿美元的速度投入纳米技术,目前技术水平居全球第二位,仅次于美国.一些稀土纳米粉、纳米新材料及纳米电子元器件已经产业化.","authors":[{"authorName":"杨启山","id":"0447ba39-fcd7-46b3-9b4a-4ce2caf545f6","originalAuthorName":"杨启山"},{"authorName":"翁国庆","id":"c31f85d3-09cf-40b4-ab32-025511f36a3d","originalAuthorName":"翁国庆"},{"authorName":"孙晋伟","id":"70a1fb9c-5b27-4bc9-bcfc-785d8b5dde20","originalAuthorName":"孙晋伟"},{"authorName":"徐斌","id":"ff6561b6-2a4a-4cd2-a19d-d8ccefd43ace","originalAuthorName":"徐斌"},{"authorName":"方媛","id":"a2fce7a2-3cf9-448f-8e71-9ff0e5872165","originalAuthorName":"方媛"},{"authorName":"张长鑫","id":"8524eb36-3562-4022-ba0e-cb1ea33d163e","originalAuthorName":"张长鑫"}],"doi":"10.3969/j.issn.1004-0277.2005.05.009","fpage":"33","id":"eeeb256c-3080-4f06-b660-e4fda246db98","issue":"5","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"56c68fdf-c5f2-440d-94ac-09090da1ca14","keyword":"日本稀土纳米技术","originalKeyword":"日本稀土纳米技术"},{"id":"84e2ac9b-18cb-4604-a838-5cca02088232","keyword":"研究与开发","originalKeyword":"研究与开发"},{"id":"35f7577d-2fe6-4b26-ac0a-a4591879c2b8","keyword":"市场状况","originalKeyword":"市场状况"}],"language":"zh","publisherId":"xitu200505009","title":"日本稀土纳米技术与市场","volume":"26","year":"2005"},{"abstractinfo":"根据水文地质条件将研究区划分为单一潜水区和多层结构区两个地下水环境背景值单元,以石嘴山市大武口区和惠农区1997年和2008年的浅层地下水水质分析数据为依据,主要采用迭代标准差法和计算分布函数法对两个背景值单元内的15项指标进行了背景值范围的计算.在此基础上比较分析了研究区背景值的时空分异特征,结果表明,气象、水文、人类活动等变化较大的因素会使地下水的化学组分随时间呈现出一定的变化,即地下水环境背景值的时间差异性;而地形地貌、含水层岩性、地下水径流条件的差异是影响不同地下水环境背景值单元内相同指标背景值差异的主要因素,即背景值具有空间差异性.对地下水环境背景值进行水质评价,结果表明,2008年较1997年,地下水质量变差.","authors":[{"authorName":"方媛","id":"4172109e-da9f-4fc6-bb62-275bb0ed775e","originalAuthorName":"方媛"},{"authorName":"吴昊","id":"6a3875ac-3461-49f9-b886-45d96925731f","originalAuthorName":"吴昊"},{"authorName":"霍晨琛","id":"cab18120-c783-4ddb-bb6c-86e2bf111045","originalAuthorName":"霍晨琛"},{"authorName":"钱会","id":"d0ed6855-ecb6-4e7b-bc15-60e007aa3417","originalAuthorName":"钱会"}],"doi":"10.7524/j.issn.0254-6108.2016.07.2015121002","fpage":"1361","id":"ba8017c5-e247-4ba4-b776-bbe45f2667ed","issue":"7","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"75627f68-7787-4d51-ab8f-fe8193a33c7a","keyword":"环境背景值","originalKeyword":"环境背景值"},{"id":"ca50cee8-b7f5-4cbf-a464-ac3b2d603b82","keyword":"浅层地下水","originalKeyword":"浅层地下水"},{"id":"002a2e80-9894-405e-91f6-95b4ac26d083","keyword":"石嘴山","originalKeyword":"石嘴山"},{"id":"7c98a8a9-2b9a-4a46-bc7e-710d0fd74b69","keyword":"迭代系数法","originalKeyword":"迭代系数法"},{"id":"1d9c1126-28e0-46bc-88fc-16117716eb32","keyword":"计算分布函数法","originalKeyword":"计算分布函数法"}],"language":"zh","publisherId":"hjhx201607005","title":"石嘴山市浅层地下水的环境背景值","volume":"35","year":"2016"},{"abstractinfo":"本文介绍罗克普方坯连铸机提高拉速后产生脱方的原因和控制方法.","authors":[{"authorName":"杨大海","id":"33245da6-c0b5-4362-bc05-c0154436bd00","originalAuthorName":"杨大海"}],"doi":"10.3969/j.issn.1005-4006.2001.02.012","fpage":"32","id":"1f630b9c-8903-4548-b753-0432c0a52c5f","issue":"2","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"31794029-5688-4642-bce0-1609968e9ec7","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"lz200102012","title":"罗克普方坯连铸机拉速提高后的脱方控制","volume":"","year":"2001"}],"totalpage":458,"totalrecord":4576}