ZHANG Fu-ming
,
MAO Qing-wu
,
MEI Cong-hua
,
LI Xin
,
HU Zu-rui
钢铁研究学报(英文版)
In Shougang Jingtang 5500 m3 huge blast furnace (BF) design, dome combustion hot blast stove (DCHBS) technology is developed. DCHBS process is optimized and integrated, and reasonable hot blast stove (HBS) technical parameters are determined. Mathematic model is established and adopted by computational fluid dynamics (CFD). The transmission theory is studied for hot blast stove combustion and gas flow, and distribution results of HBS velocity field, CO density field and temperature field are achieved. Physical test model and hot trail unit are established, and the numeral calculation result is verified through test and investigation. 3-D simulation design is adopted. HBS process flow and process layout are optimized and designed. Combustion air two-stage high temperature preheating technology is designed and developed. Two sets of small size DCHBSs are adopted to preheat the combustion air to 520-600 ℃. With the precondition of BF gas combustion, the hot blast stove dome temperature can exceed 1420 ℃. According to DCHBS technical features, reasonable refractory structure is designed. Effective technical measures are adopted to prevent hot blast stove shell intercrystalline stress corrosion. Hot blast stove hot pipe and lining system are optimized and designed. After blowing in, the blast temperature keeps increasing, and the monthly average blast temperature reaches 1300 ℃ when burning single BF gas.
关键词:
dome combustion hot blast stove
,
high blast temperature
,
ceramic burner
,
high temperature combustion air preheating
,
CFD
张福明,胡祖瑞,程树森,李欣
钢铁
为开发5500m3高炉BSK顶燃式热风炉技术,对顶燃式热风炉的燃烧机制和燃烧特性进行了研究。采用CFD数学仿真模拟研究了BSK顶燃式热风炉环形陶瓷燃烧器的燃烧机制,解析了顶燃式热风炉燃烧室内气体的混合、流动以及燃烧过程,计算分析了顶燃式热风炉燃烧过程的速度场、温度场以及浓度场分布。通过对实体热风炉的冷态测试,验证了CFD数学仿真计算的结果。研究结果表明,BSK顶燃式热风炉采用旋流扩散燃烧技术使燃烧过程速度场、温度场和浓度场分布均匀对称,并可以有效控制火焰长度和火焰形状,使煤气在拱顶空间内充分燃烧。速度场、温度场和浓度场的分布与煤气和助燃空气的初始分布有直接关系。通过燃烧器喷嘴结构优化设计可以显著提高空气与煤气混合的均匀性,改善燃烧室内浓度、温度分布以及火焰形状。
关键词:
顶燃式热风炉
,
burner
,
combustion mechanism
,
optimal design