{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用电子束、原子束、离子束技术在基体上沉积NiCorAlY-ZrO2·Y2O3热障复合涂层,对其进行了1 100 ℃不同时间的等温氧化试验,用扫描电镜和X射线衍射仪对涂层进行观察和分析.结果表明:涂层的氧化行为基本遵循抛物线规律;随着氧化时间的增加,表面陶瓷层厚度逐渐减少;表面发生铬氧化物的富集,同时由于表面钇的偏聚对表面铬氧化物起钉扎作用,从而使含钇的铬氧化物在涂层的抗氧化中起了主要贡献;镍、钴等脆性氧化物发生剥落的同时,导致了铝氧化物的耗损;300 h氧化后陶瓷层与合金层仍具有良好的结合.","authors":[{"authorName":"杨淑勤","id":"efb2b5b5-06c3-4703-adee-9d1a31fa184d","originalAuthorName":"杨淑勤"},{"authorName":"兰晓华","id":"66ab1b55-16fe-4f6e-ba08-9be81cef8f90","originalAuthorName":"兰晓华"},{"authorName":"黄宁康","id":"62544238-66ea-4c59-bd46-ea43f4c6fe27","originalAuthorName":"黄宁康"}],"doi":"10.3969/j.issn.1000-3738.2007.06.002","fpage":"6","id":"737298ee-d61f-40ac-ae59-79fa2ea036c1","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"6b2f7ba2-695c-4ca8-af2e-188ef8b9f79b","keyword":"热障涂层","originalKeyword":"热障涂层"},{"id":"5224f5a1-2ffb-47cb-9c95-556a4317a2b2","keyword":"NiCorAlY-ZrO2·Y2O3","originalKeyword":"NiCorAlY-ZrO2·Y2O3"},{"id":"90c2d982-413e-40b9-b29a-68f5c83527fc","keyword":"三束技术","originalKeyword":"三束技术"}],"language":"zh","publisherId":"jxgccl200706002","title":"NiCoCrAIY-ZrO2·Y2O3涂层在1 100 ℃不同时间的氧化行为","volume":"31","year":"2007"},{"abstractinfo":"The effects of the contents of ZrO2(3Y) and ZrO2(2Y) on the sintering densification, microstructure and transformation behavior of the composites Al2O3/ZrO2(Y2O3) were analyzed, which was prepared by vacuum sintering. It was found that volume fraction of ZrO2(Y2O3) affected the transformation amount of t -> m-ZrO2. The results also show that when the contents of ZrO2(3Y) and ZrO2(2Y) were 15 and 20 vol.%, respectively, the relative densities of the Al2O3/ZrO2(Y2O3) composites were 99.6% and 99.1 %, and the average grain sizes of ZrO2(Y2O3) were 1.3 and 1.5 mu m, respectively. In addition, the transformation quantities of the samples before and after fracture were V-t -> m = 44 vol.% and V-t -> m = 18 vol.%. (c) 2007 Published by Elsevier B.V.","authors":[],"categoryName":"|","doi":"","fpage":"100","id":"5af577ab-0b69-4ffe-afde-92fb32b9e35d","issue":"42737","journal":{"abbrevTitle":"MSAEAMPMAP","id":"29fa6a83-07f2-4d3a-af3e-fac686227352","issnPpub":"0921-5093","publisherId":"MSAEAMPMAP","title":"Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing"},"keywords":[{"id":"1557aae4-bae9-493c-bb3b-b700d07c3f9a","keyword":"vacuum sintering;Al2O3/ZrO2(Y2O3) composites;densification;microstructure;transformation behavior;mechanical-properties;alumina-zirconia;energy","originalKeyword":"vacuum sintering;Al2O3/ZrO2(Y2O3) composites;densification;microstructure;transformation behavior;mechanical-properties;alumina-zirconia;energy"}],"language":"en","publisherId":"0921-5093_2008_42737_22","title":"Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites","volume":"477","year":"2008"},{"abstractinfo":"分析掺钇的超细氧化锆时,试用连续络合滴定法测定样品中的ZrO2Y2O3,当ZrO2被滴定后,调节溶液的pH值5~6测Y2O3时,因Zr-EDTA配合物部分分解(此类样品中含ZrO2一般在94%以上),导致Y2O3的测定困难.作者选用合适的掩蔽剂乙酰丙酮能定量掩蔽大量的ZrO2+,从而为此类样品中Y2O3的直接测定提供了准确、快捷的方法,它灵敏度高,终点变色敏锐,结果的标准偏差为0.041%.","authors":[{"authorName":"高友良","id":"f191d5ad-56ab-4b5c-9dfe-1ec960349ed4","originalAuthorName":"高友良"},{"authorName":"胡伯文","id":"d21ffc73-3c38-4216-a9b0-dd31331ebb76","originalAuthorName":"胡伯文"},{"authorName":"曾锋","id":"5e0e3295-b67e-4a6e-b9c4-e0047f27d3fb","originalAuthorName":"曾锋"},{"authorName":"曾左雨","id":"53f93042-20f3-4ae8-83ab-936b85314dc5","originalAuthorName":"曾左雨"}],"doi":"10.3969/j.issn.1001-1625.2000.02.013","fpage":"46","id":"ad9c6a88-ff92-4381-a96e-49747dfe016e","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"a7d567cb-139e-4d3f-969c-94a5fe7c554d","keyword":"络合滴定法","originalKeyword":"络合滴定法"},{"id":"87ac1dc2-4d13-45a3-8203-5f4c302abb01","keyword":"乙酰丙酮","originalKeyword":"乙酰丙酮"},{"id":"98a75317-a413-42ee-b3cc-858ff5789953","keyword":"ZrO2","originalKeyword":"ZrO2"},{"id":"f7c3db6f-3b07-41ea-aad8-f561653a8cf9","keyword":"Y2O3","originalKeyword":"Y2O3"}],"language":"zh","publisherId":"gsytb200002013","title":"超细ZrO2Y2O3的快速测定","volume":"19","year":"2000"},{"abstractinfo":"本文采用有机泡沫浸渍法制备了Y2O3/ZrO2双层复合、Y2O3/Y2O3-ZrO2/ZrO2三层复合及Y2O3ZrO2单相泡沫陶瓷,分析了两种复合泡沫陶瓷层间的结合及各层显微结构随烧结温度的变化,并与单相氧化物陶瓷进行了对比.结果表明:双层复合陶瓷层间有较大缝隙,这是因为两种氧化物陶瓷烧结不同步造成的.三层复合陶瓷中Y2O3-ZrO2混合中间层的存在减弱了Y2 O3ZrO2烧结不同步引起的层间应力,层间结合明显改善,并大大减少了泡沫陶瓷表面宏观裂纹.两种复合陶瓷的ZrO2内层的烧结程度都低于单相ZFO2,这主要是因为先于ZrO2烧结的Y2O3外层阻碍了内部气体的排出从而阻碍ZrO2的烧结所致.","authors":[{"authorName":"张阿妮","id":"41579300-7a82-4695-b661-bb907cc43021","originalAuthorName":"张阿妮"},{"authorName":"唐晓霞","id":"332b44e0-d33d-4d47-a145-96df73a6bb23","originalAuthorName":"唐晓霞"},{"authorName":"张花蕊","id":"af763fa7-d6d6-4bbc-830b-7d74fcff3559","originalAuthorName":"张花蕊"},{"authorName":"罗德映","id":"b1df485b-0d2f-4652-b79b-80cba1d22a69","originalAuthorName":"罗德映"},{"authorName":"张虎","id":"1ecfb402-78cc-4aed-bb99-641f9779fc66","originalAuthorName":"张虎"}],"doi":"","fpage":"47","id":"a2553e7e-d895-4f2e-9221-e5e894be0d4e","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"1f3a957d-764e-4220-931a-88f83f1896a1","keyword":"Y2O3","originalKeyword":"Y2O3"},{"id":"0b0bc221-ecb7-410b-b533-200e4d9e79fa","keyword":"ZrO2","originalKeyword":"ZrO2"},{"id":"670f5971-5846-4eaa-abe7-9e70bc2b8277","keyword":"复合陶瓷","originalKeyword":"复合陶瓷"},{"id":"a5752377-bdb9-422f-ab62-39d07c2d3b39","keyword":"泡沫陶瓷","originalKeyword":"泡沫陶瓷"},{"id":"85cc0e6c-f7f1-4dbc-a972-76b617fb6c3d","keyword":"烧结","originalKeyword":"烧结"}],"language":"zh","publisherId":"rgjtxb98201201011","title":"Y2O3/ZrO2复合泡沫陶瓷烧结的初步研究","volume":"41","year":"2012"},{"abstractinfo":"采用冷冻干燥法合成了Y2O3,MgO共掺杂的ZrO2均匀超细粉.通过TG-DTA,XRD,TEM和粒度分布仪等检测手段对产品进行了表征.结果表明:Y2O3含量为2%,MgO含量为9%(摩尔分数)时,在550℃得到了全稳定立方相ZrO2,样品的均匀性较好,表面活性较高,粒径约为23.2 nm.","authors":[{"authorName":"陈汝芬","id":"313e4bef-e632-415c-920a-e74a72e9d7b7","originalAuthorName":"陈汝芬"},{"authorName":"宋秀芹","id":"e47382d4-8165-4777-b2b9-ecb098d7d2ae","originalAuthorName":"宋秀芹"}],"doi":"10.3969/j.issn.0258-7076.2004.04.007","fpage":"635","id":"1c5d9bd7-2aec-4f61-8c0a-840c50449c1c","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"c5607ec0-7bc8-412d-85a3-744b10d09f64","keyword":"(Y2O3·MgO)-ZrO2","originalKeyword":"(Y2O3·MgO)-ZrO2"},{"id":"433d9ef9-7381-49a1-b00a-54c5e18ae016","keyword":"冷冻干燥法","originalKeyword":"冷冻干燥法"},{"id":"583b9bcb-a3a7-4092-b785-68a5c75b1557","keyword":"超细粉","originalKeyword":"超细粉"}],"language":"zh","publisherId":"xyjs200404007","title":"冷冻干燥法制备(Y2O3·MgO)-ZrO2超细粉","volume":"28","year":"2004"},{"abstractinfo":"通过YSZ膜料的制备及结构分析,得出Y2O3的最佳加入量.结果表明Y2O3的加入量达到7 mol%时,材料中ZrO2主要以高温相存在,达到了材料稳定的要求;通过对YSZ膜料和薄膜的结构检测和晶粒尺寸计算,进一步证明Y2O3ZrO2具有良好的稳定作用;提出膜料预熔是一次高温退火过程,能使未完全发生相变的单斜相ZrO2转变为高温相.","authors":[{"authorName":"吴师岗","id":"544736ff-1a76-41f4-b54b-8dfbae333bfd","originalAuthorName":"吴师岗"},{"authorName":"张红鹰","id":"d6866d3b-35ef-49da-8466-05f5dfffb647","originalAuthorName":"张红鹰"}],"doi":"","fpage":"2020","id":"2a0a9f68-1b29-40f6-aa2d-ae8007d38bab","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"40d87a99-6e0e-4047-9ec2-edc59f08842e","keyword":"YSZ膜料","originalKeyword":"YSZ膜料"},{"id":"1c8fff77-c08a-44ab-a06a-eb623e543363","keyword":"高温相","originalKeyword":"高温相"},{"id":"ffad8abd-7d0d-466b-ba96-bfc704494b13","keyword":"结构","originalKeyword":"结构"},{"id":"a67ed536-df9a-41f7-9baa-485bf4aff4e4","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"},{"id":"02628346-94a8-4b32-8875-2269a111ced0","keyword":"预熔","originalKeyword":"预熔"}],"language":"zh","publisherId":"xyjsclygc201508040","title":"Y2O3稳定ZrO2(YSZ)膜料制备与结构分析","volume":"44","year":"2015"},{"abstractinfo":"本研究在MgO-PSZ基础上引入Y2O3共同稳定ZrO2,采用溶胶-凝胶法制得MgO-Y2O3-ZrO2超微细粉,经成型、烧结制得(Mg、Y)-PSZ陶瓷材料.经性能及微观结构测试,结果表明用此法制得的材料,其烧结温度从1600℃降至1450℃,晶粒尺寸减小至1~2μm,抗弯强度及断裂韧性明显提高.","authors":[{"authorName":"吴建锋","id":"ce63d935-6e98-4739-b916-0487aea64ddb","originalAuthorName":"吴建锋"},{"authorName":"徐晓虹","id":"ac276cfd-58af-4ef4-9a29-daaccdab0809","originalAuthorName":"徐晓虹"},{"authorName":"孙淑珍","id":"d22ebd1e-5934-4fb3-bcd0-4c6178a574ed","originalAuthorName":"孙淑珍"},{"authorName":"任永光","id":"36bb827c-2b0c-4dbc-ab43-5ea36ff245da","originalAuthorName":"任永光"}],"doi":"10.3969/j.issn.1001-1625.1999.05.016","fpage":"69","id":"0409d828-e5f8-4e7b-b7ca-9b06f7f294a6","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"84175ae1-908a-42ba-84e9-d1399baba4db","keyword":"(Mg,Y)-PSZ","originalKeyword":"(Mg,Y)-PSZ"},{"id":"4261d93e-a66f-4da4-bbed-9af62d37f547","keyword":"共同稳定","originalKeyword":"共同稳定"},{"id":"1f6e6bb6-bfd4-4ad1-a6df-706487d1ce33","keyword":"烧结温度、力学性能","originalKeyword":"烧结温度、力学性能"}],"language":"zh","publisherId":"gsytb199905016","title":"(MgO·Y2O3)稳定ZrO2的研究","volume":"18","year":"1999"},{"abstractinfo":"用Tween-80保护共沉淀法制备了ZrO2(Y2O3)纳米粉体.用差热分析、热重分析、X射线衍射及透射电子显微镜等技术研究了粉体的特征.结果表明:在700℃煅烧0.5 h后ZrO2(Y2O3)粉体的平均粒径为3~9 nm,比表面为128.5~134.5m2g-1,在1250℃煅烧8 h后ZrO2(Y2O3)粉体已完全形成了立方相的ZrO2固溶体.并且有非常好的烧结性能.","authors":[{"authorName":"邵忠宝","id":"6ccdabe6-c96c-40e4-b755-3972f4490a7a","originalAuthorName":"邵忠宝"},{"authorName":"王伟","id":"7645d395-f457-437d-84da-43649fc88f5a","originalAuthorName":"王伟"}],"doi":"10.3321/j.issn:1005-3093.2002.02.019","fpage":"210","id":"196b30d6-bf12-4f24-8ca3-eeca5e650d5b","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"39279acb-6b9d-46d2-bc80-1dcbf27c61ee","keyword":"氧化锆","originalKeyword":"氧化锆"},{"id":"7ec1f1f5-2254-45ca-a3e9-8b78655478b4","keyword":"共沉淀","originalKeyword":"共沉淀"},{"id":"26ddcece-7d46-447c-a209-8386622f5a5b","keyword":"Tween-80","originalKeyword":"Tween-80"},{"id":"fa3924f3-b5b8-4ad9-997c-1b2367f89092","keyword":"粉体","originalKeyword":"粉体"}],"language":"zh","publisherId":"clyjxb200202019","title":"用保护共沉淀法制备纳米ZrO2(Y2O3)粉体","volume":"16","year":"2002"},{"abstractinfo":"用真空烧结方法制备了Al2O3/ZrO2(Y2O3)复合材料,分析了ZrO2(3Y)和ZrO2(2Y)含量对Al2O3基陶瓷抗弯强度、断裂韧性的影响.用XRD定量分析了含摩尔分数2%与3%Y2O3ZrO2(2Y)与ZrO2(BY)在断裂过程中四方相转变成单斜相的相变量,用以阐明增韧机制.结果表明,在ZrO2含量为15%(体积分数)时,Al2O3/ZrO2(3Y)和Al2O3/ZrO2(2Y)复合材料的抗弯强度、断裂韧性分别达到825 MPa,7.8 MPa·m1/2和738 MPa,6.7 MPa·m1/2,两者的性能差异主要来自不同的增韧机制.","authors":[{"authorName":"马伟民","id":"0d8b31c7-ba94-4bcf-93e6-a0c25d32187b","originalAuthorName":"马伟民"},{"authorName":"修稚萌","id":"21601186-fc86-4887-8bd3-e64f899d40dc","originalAuthorName":"修稚萌"},{"authorName":"毕孝国","id":"14b5da87-d4b6-49a1-ae30-3a9630704719","originalAuthorName":"毕孝国"},{"authorName":"闻雷","id":"f3ef9992-27e7-44cc-b234-151832aa2880","originalAuthorName":"闻雷"},{"authorName":"孙旭东","id":"263e9c06-e47f-4ab2-88eb-3026d07ad349","originalAuthorName":"孙旭东"}],"doi":"10.3321/j.issn:0412-1961.2005.01.018","fpage":"93","id":"55de0ee6-67f6-49ef-a710-86276f7fac27","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f00c0b52-cf6a-4a64-abbe-75d45c0dea13","keyword":"Al2O3/ZrO2复合材料","originalKeyword":"Al2O3/ZrO2复合材料"},{"id":"e9148913-4fe9-4b3e-82a3-471fff474af1","keyword":"真空烧结","originalKeyword":"真空烧结"},{"id":"e7077f4d-c5b9-487b-acce-591c93a920de","keyword":"相变增韧","originalKeyword":"相变增韧"},{"id":"a1dd417c-9151-4c62-be64-ccee51f2c1cb","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsxb200501018","title":"Al2O3/ZrO2(Y2O3)复合材料断裂过程中的相变及力学性能","volume":"41","year":"2005"},{"abstractinfo":"利用交流复阻抗分析技术对Y2O3与 MgO复合掺杂ZrO2材料的电性能进行了研究.发现随着Y2O3掺入量的增加,参与跃迁的氧空位增多,并促进烧结体的密度提高,气孔率降低,使得晶粒边界的电阻减少,导致(ZrO2)1-x-y(YO1.5)x(MgO)y陶瓷电导率增大.烧结温度的提高也是增加 (ZrO2 )1-x-y(YO1.5)x(MgO)y陶瓷电导率的重要因素之一.","authors":[{"authorName":"赵文广","id":"527e7864-8dba-4b37-b588-8bfaba97742e","originalAuthorName":"赵文广"},{"authorName":"安胜利","id":"fa5dae05-01d2-4fda-a373-69d418ce6eff","originalAuthorName":"安胜利"},{"authorName":"宋希文","id":"05bfba64-f585-4d98-a30f-5b180a327731","originalAuthorName":"宋希文"}],"doi":"10.3969/j.issn.1004-0277.2006.04.014","fpage":"59","id":"5986390d-655b-4832-aae0-cd0f16e80484","issue":"4","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"92dc0970-900f-4132-926e-1dc5eaad2cb4","keyword":"(ZrO2)1-x-y(YO1.5)x(MgO)y陶瓷","originalKeyword":"(ZrO2)1-x-y(YO1.5)x(MgO)y陶瓷"},{"id":"af3f3f38-89ae-4026-a50b-210b6ba87884","keyword":"氧化钇","originalKeyword":"氧化钇"},{"id":"b138202e-b9c4-49ae-9a73-ad1364f43a78","keyword":"交流复阻抗","originalKeyword":"交流复阻抗"},{"id":"8f96c2a5-fe7d-4913-9962-80d491dfbe13","keyword":"电导率","originalKeyword":"电导率"}],"language":"zh","publisherId":"xitu200604014","title":"Y2O3与MgO复合掺杂ZrO2材料的电性能研究","volume":"27","year":"2006"}],"totalpage":10523,"totalrecord":105226}