{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了汽车空腔防腐用防锈蜡的组成和防锈机理以及注蜡和喷蜡2种涂覆工艺,对水基蜡、溶剂型蜡和纯蜡喷涂工艺进行了讨论,为汽车空腔防锈蜡涂覆生产提供参考.","authors":[{"authorName":"周磊","id":"7d80a49e-db42-41a1-8100-39baf227ac9d","originalAuthorName":"周磊"},{"authorName":"王云飞","id":"05e81c3b-f687-428e-b5e9-e8a791abd7f1","originalAuthorName":"王云飞"},{"authorName":"华云","id":"d9654a79-5fa1-46be-a171-405886ca0627","originalAuthorName":"华云"}],"doi":"","fpage":"71","id":"16d3374d-4d9e-435a-91fb-4e5639e70432","issue":"5","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"6acbe820-9b37-42bf-8ee8-6edc8382c3e4","keyword":"汽车","originalKeyword":"汽车"},{"id":"1f4ef2de-3a44-4193-b3d7-2baf9040af9f","keyword":"空腔","originalKeyword":"空腔"},{"id":"d45a9a2c-ac5c-43ad-ba02-c2e40202576d","keyword":"涂装","originalKeyword":"涂装"},{"id":"323c14ce-1e0e-4ec3-bff9-61922cfc865f","keyword":"防腐","originalKeyword":"防腐"},{"id":"737e6c37-994c-4147-930f-7259725e2249","keyword":"防锈蜡","originalKeyword":"防锈蜡"},{"id":"613f0606-add4-43bb-b981-4677fe5b72bc","keyword":"浇注","originalKeyword":"浇注"},{"id":"66d3578f-afc7-4715-a66b-6a83e2259120","keyword":"喷涂","originalKeyword":"喷涂"}],"language":"zh","publisherId":"ddyts201305018","title":"汽车空腔防锈蜡喷涂工艺","volume":"32","year":"2013"},{"abstractinfo":"介绍了采用有机玻璃(聚甲基丙烯酸甲酯,PMMP)作基底,对施镀表面进行催化活化处理,沉积的铜再产生自身钝化作用而得到一定厚度的铜层制备微型铜空腔的工艺.讨论了化学镀液的主要成分对镀速及镀层质量的影响.结果表明,由此工艺所制备的铜层壁厚范围在10~30μm,长度在2mm左右,镀层铜含量大于95%,为制备惯性约束聚变(ICF)金属腔靶提供了一种新方法.","authors":[{"authorName":"周兰","id":"b014f9c6-6272-4b74-ad23-b74770f833f0","originalAuthorName":"周兰"},{"authorName":"万小波","id":"0aafda31-6df6-4fea-8901-b80f7aeef2aa","originalAuthorName":"万小波"},{"authorName":"任洪波","id":"27551496-2432-4693-b24f-89d191924b33","originalAuthorName":"任洪波"},{"authorName":"肖江","id":"893c8a33-f55d-4f1f-ad97-c210fd47bb54","originalAuthorName":"肖江"},{"authorName":"张伟","id":"e5c8e964-e823-4a2a-b197-18b040f20210","originalAuthorName":"张伟"}],"doi":"","fpage":"26","id":"8f03cbc1-d83a-44c0-b24a-7ef3487fef51","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"45144311-696c-4c18-a09e-d6ab4eee2d07","keyword":"惯性约束聚变(ICF)","originalKeyword":"惯性约束聚变(ICF)"},{"id":"caa018a9-396e-44f0-ae72-31ad8c3d51ff","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"f4abe6de-eac3-49e0-b5bf-906edd16f3a3","keyword":"有机玻璃","originalKeyword":"有机玻璃"},{"id":"8cccbdf9-f091-4552-8c4d-9627566f260d","keyword":"空腔","originalKeyword":"空腔"},{"id":"430b0f42-2379-4bfc-9538-859eb82ac687","keyword":"铜","originalKeyword":"铜"}],"language":"zh","publisherId":"clbh200806009","title":"微型空腔化学镀铜工艺研究","volume":"41","year":"2008"},{"abstractinfo":"大涡模拟(LES)和三维的Ffowcs Williams-Hawkings声学比拟方法相结合,研究空腔过流的一种噪声控制措施.空腔的底板/后墙使用多孔壁板,因此流体可以穿透空腔壁面,多孔效果使用Darcy压力-速度关系模拟.声源流场由LES计算,声辐射和远声场由声学比拟获得.结果表明,这种措施有效地减弱了空腔内的压力脉动和远场声辐射,低频脉动Rossiter模数对应的波动幅值被有效抑制,声源中偶极子占优项大幅度减小,从而抑制了声辐射.","authors":[{"authorName":"赖焕新","id":"df8d35b3-ca87-4124-835d-1bf65fe4b746","originalAuthorName":"赖焕新"},{"authorName":"周邵萍","id":"484ae30a-2030-4a56-9fe9-acfc8ab39a1d","originalAuthorName":"周邵萍"},{"authorName":"苏永升","id":"4f26f79a-7c69-40d1-8817-4ed586f354f7","originalAuthorName":"苏永升"},{"authorName":"邢改兰","id":"639836b1-95ad-49af-a72a-d804d7cc3521","originalAuthorName":"邢改兰"},{"authorName":"罗开红","id":"539a8b7b-6e79-4f0a-813c-11469876b1e1","originalAuthorName":"罗开红"}],"doi":"","fpage":"228","id":"e13ca071-7a08-4e8c-8896-4dad0b972cbe","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"07158bbe-3950-4a12-85f5-dd2c7d723af8","keyword":"空腔","originalKeyword":"空腔"},{"id":"afe80475-4b44-4306-a7f1-09e35734da0b","keyword":"噪声控制","originalKeyword":"噪声控制"},{"id":"87a1800a-c0dd-4dc4-9634-a1969f94be53","keyword":"多孔壁板","originalKeyword":"多孔壁板"},{"id":"0ca8909e-51ba-46bc-9e26-e40d2a7db8d7","keyword":"大涡模拟","originalKeyword":"大涡模拟"},{"id":"f0bdfff0-5572-4fa6-bd05-a0b8f7af6ce0","keyword":"声学比拟","originalKeyword":"声学比拟"}],"language":"zh","publisherId":"gcrwlxb200802013","title":"空腔流动的大涡模拟及气动噪声控制","volume":"29","year":"2008"},{"abstractinfo":"为了评估长时间充氮无油存放的变压器质量,重点从氮气中水分对绝缘性能的影响、绝缘材料老化降解、空腔及气泡形成等方面进行分析,指出了变压器长期充氮存放可能出现的风险,同时对实际长期存放的变压器的电气性能进行了对比分析。结果表明:采取有效的保护措施后无油充氮存放对产品质量不会造成明显的影响,采取正确的处理工艺后产品质量可以得到较好的恢复,为后续变压器的存放管理提供参考。","authors":[{"authorName":"卢庆港","id":"c7c101d6-bc51-4969-a716-ec195fd9ec20","originalAuthorName":"卢庆港"},{"authorName":"黄胜茂","id":"201466d7-cfea-422d-9cbf-03d8f492eb1f","originalAuthorName":"黄胜茂"},{"authorName":"杜亚平","id":"f19e7ba6-d14f-42c1-a9ef-a88390bbd244","originalAuthorName":"杜亚平"},{"authorName":"代金良","id":"11943f84-6145-42b8-bdf7-aea35160b80f","originalAuthorName":"代金良"}],"doi":"","fpage":"61","id":"c5745695-d846-4e45-8017-332ac99849f6","issue":"3","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"e8432ff0-605d-4f53-90f2-4cd725d4a20e","keyword":"油浸变压器","originalKeyword":"油浸变压器"},{"id":"4900d23d-bab2-4477-95b9-41cae2b98b93","keyword":"充氮","originalKeyword":"充氮"},{"id":"0bb5db18-e091-4d22-8bde-e2c7cdd6a1f2","keyword":"绝缘","originalKeyword":"绝缘"},{"id":"8ca2e4de-34c2-4ca9-8629-9f5909682949","keyword":"水分","originalKeyword":"水分"},{"id":"7102000b-805b-4fa6-8187-29a27097a4d7","keyword":"降解","originalKeyword":"降解"},{"id":"ccd19b54-70b8-4c81-8bb0-7134bc3d04f1","keyword":"空腔","originalKeyword":"空腔"},{"id":"97049f46-d4b4-4a83-b089-33c6845a3a9c","keyword":"气泡","originalKeyword":"气泡"},{"id":"45fd547c-c125-4fc5-8c3c-5f1e31fc2a81","keyword":"质量","originalKeyword":"质量"}],"language":"zh","publisherId":"jycltx201403017","title":"油浸变压器长期充氮无油存放的风险及控制","volume":"","year":"2014"},{"abstractinfo":"针对传统SHS法制备陶瓷内衬小口径管中陶瓷熔涂长度过短的问题,开发了制备复合细长管的新工艺.以Al粉和Fe2 O3粉为反应原料,混合均匀后配合钢棒装填粉末,使粉料中形成空腔,反应时不锈钢管与地面呈80°夹角.结果表明:新工艺能够解决反应产物堵塞管道和管壁烧穿的问题,显著提高体系的燃烧速度,增加陶瓷的熔涂长度.钢管内壁均已涂上陶瓷,涂层厚度为1.2~1.5 mm.涂层中气孔少,不存在凝固缺陷,可防止腐蚀性液体对基体的侵蚀.","authors":[{"authorName":"苏宏艺","id":"3f3eb45f-33d3-46e4-bb5e-4a2e230260b5","originalAuthorName":"苏宏艺"},{"authorName":"陈威","id":"7732e771-813e-456b-bb3c-121fd0185195","originalAuthorName":"陈威"},{"authorName":"任伟","id":"4174637d-341f-4672-bacd-b32d726c91b6","originalAuthorName":"任伟"},{"authorName":"李宁一","id":"11771915-6f51-41bc-9dba-131453088bcd","originalAuthorName":"李宁一"},{"authorName":"张啸宇","id":"094cb7d9-a860-4ae3-b202-1651ca79e70f","originalAuthorName":"张啸宇"}],"doi":"10.13228/j.boyuan.issn1005-8192.2015003","fpage":"29","id":"75bbb283-c471-457c-be26-5113ba958950","issue":"2","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"d1b5e09a-b3bd-44f2-a1d5-56c43d758930","keyword":"SHS自重法","originalKeyword":"SHS自重法"},{"id":"553fb647-9e70-4338-b160-f99615befb97","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"410313a9-7bb4-4f50-a0c0-41f6769d6b5b","keyword":"细长管","originalKeyword":"细长管"},{"id":"c0df7674-e873-4cc2-a852-5f648833f903","keyword":"空腔","originalKeyword":"空腔"},{"id":"f35e9777-e5a3-4a86-85b2-eb23a6e5a742","keyword":"燃烧速度","originalKeyword":"燃烧速度"}],"language":"zh","publisherId":"jsgncl201502008","title":"SHS自重法制备陶瓷内衬复合细长管","volume":"22","year":"2015"},{"abstractinfo":"室温下将40 keV的H离子以不同剂量注入到单晶Si样品中,部分H预注入的样品又进行了190 keV O离子注入.采用光学显微镜和透射电子显微镜分析比较了注入及退火后单晶Si样品的表面损伤以及注入层微观缺陷的形貌.光学显微镜结果表明,只有高剂量H离子注入的单晶Si经过450℃退火后出现了表面发泡和剥离,而总剂量相同的H、O离子顺次注入单晶Si的样品没有出现任何表面损伤.透射电子显微镜结果表明,低剂量H离子注入单晶Si经过高温退火可以在样品内部形成一个由空腔构成的损伤带.附加O离子注入对损伤形貌产生了重要影响,空腔消失,损伤带由大量板状缺陷构成.","authors":[{"authorName":"王卓","id":"7472cbc3-32b5-4b18-82c6-c72d861d7c34","originalAuthorName":"王卓"},{"authorName":"田光","id":"f9a0a975-5e46-4dd2-a9ce-d4f5b2e0ee98","originalAuthorName":"田光"},{"authorName":"石少波","id":"b3070e65-d35c-4f2e-8c80-0c62e431bb68","originalAuthorName":"石少波"}],"doi":"","fpage":"2600","id":"26598437-0a0a-492d-ab0d-5e4073c7b23e","issue":"8","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"f4f3042b-6200-4a70-b2b9-c35abfaf8c52","keyword":"H离子注入","originalKeyword":"H离子注入"},{"id":"f9cba032-c7f7-450a-b08b-8b23f453aa72","keyword":"空腔","originalKeyword":"空腔"},{"id":"ef706a31-d299-46d9-a6fa-0ef987d7915c","keyword":"单晶Si","originalKeyword":"单晶Si"}],"language":"zh","publisherId":"gsytb201608045","title":"附加O离子注入对单晶Si中H注入损伤的影响研究","volume":"35","year":"2016"},{"abstractinfo":"本文基于壁面动态压力传感器,研究了空腔流激振荡特性.在此基础上,设计了四种被动控制方法来抑制空腔流激振荡,即在空腔来流安装圆柱、矩形、锯齿以及三角形扰流体.基于压力测量结果,分析了空腔振荡模态频率特征,并使用修正的预测攻势对空腔流激振荡模态频率进行了预测,并对四种扰流体控制下的频谱特征进行了分析,结果表明,在上游安装圆柱扰流体效果最好.","authors":[{"authorName":"吴亚东","id":"68d7a593-160a-45f9-bfe7-80b179ba9c33","originalAuthorName":"吴亚东"},{"authorName":"欧阳华","id":"013d7d9a-e1f6-48f3-a71d-05bff2e73f19","originalAuthorName":"欧阳华"},{"authorName":"黄友","id":"607196ed-38f6-408f-bc1c-9334a5d8b9f7","originalAuthorName":"黄友"}],"doi":"","fpage":"1640","id":"d1943545-ebaf-4aee-a7a1-d06a5fadc6f9","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"2a9952eb-4bee-479e-90cf-0676f049b758","keyword":"空腔流动","originalKeyword":"空腔流动"},{"id":"eaa04028-2733-4995-8580-4821d2af383a","keyword":"被动控制","originalKeyword":"被动控制"},{"id":"4bd00611-aeee-4344-81d8-479a508ec4ad","keyword":"压力","originalKeyword":"压力"},{"id":"5f0c13ad-56ff-4c5d-908c-f27a04dbcf89","keyword":"流激振荡","originalKeyword":"流激振荡"}],"language":"zh","publisherId":"gcrwlxb201309009","title":"基于被动控制的空腔脉动压力实验研究","volume":"34","year":"2013"},{"abstractinfo":"激光试验装置中的整体式铜腔靶精度要求高,现有机加工方法不能满足要求.为此,在预处理芯轴(聚甲基丙烯酸甲酯)表面采用化学镀法制备铜空腔,研究了镀液中甲醛含量、pH值、温度等对镀速和镀液稳定性的影响.确定了适宜的化学镀铜工艺为:10 g/L 硫酸铜,10~20 mL/L 甲醛,40 g/L 酒石酸钾钠,20 g/L 乙二胺四乙酸二钠,0.1 g/L 稳定剂(2,2-联吡啶),pH值12.0~13.0,温度40~70 ℃.制备的铜空腔壁厚达25 μm,表面无砂眼、裂纹等缺陷,刻蚀芯轴后空腔能自持.","authors":[{"authorName":"万小波","id":"2040a745-8e47-45af-b443-9229fc4ad76e","originalAuthorName":"万小波"},{"authorName":"任洪波","id":"35d255f6-8d4b-41ee-bff0-19a552dbbc3a","originalAuthorName":"任洪波"},{"authorName":"周兰","id":"64e200ef-c87d-4d90-8dc3-8136f6cdd9fe","originalAuthorName":"周兰"},{"authorName":"肖江","id":"1ef8d738-667e-4937-9766-cc03a1752169","originalAuthorName":"肖江"}],"doi":"10.3969/j.issn.1001-1560.2006.04.021","fpage":"69","id":"a5ed1162-5254-4f63-8465-cf7a40d5b010","issue":"4","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"735b96a8-a48e-4585-9be6-3d496b28995a","keyword":"化学镀铜","originalKeyword":"化学镀铜"},{"id":"b0fb1f73-5fce-47ee-a2f5-f7c523ca082e","keyword":"铜空腔","originalKeyword":"铜空腔"},{"id":"0299390a-7e7b-49f6-b88b-9a0b846cdabd","keyword":"镀速","originalKeyword":"镀速"}],"language":"zh","publisherId":"clbh200604021","title":"化学镀方法制备铜空腔工艺","volume":"39","year":"2006"},{"abstractinfo":"以明胶微球为模板, 采用层层自组装技术制备了明胶/SiO2/PAH复合微球, 并用热水溶解模板得到了SiO2/PAH复合空腔微球. 通过用ζ电位、TEM、IR、TG等测试手段对其样品进行表征分析. 结果表明, SiO2/PAH有效地组装在明胶微球上, 形成了核壳式结构, 模板去除后得到空腔结构. 在溶解模板的过程中, 通过对明胶水解产物氨基酸含量的测定, 发现SiO2/聚电解质的存在具有一定的缓释性.","authors":[{"authorName":"丁素丽","id":"fb11eae8-a502-4827-ad0b-9c1055c6bf1a","originalAuthorName":"丁素丽"},{"authorName":"朱以华","id":"5715bd41-2d0d-47c4-a295-f6125c94ac63","originalAuthorName":"朱以华"},{"authorName":"杨晓玲","id":"3297ccf3-f7e5-4500-8a9b-750814796dfb","originalAuthorName":"杨晓玲"}],"categoryName":"|","doi":"","fpage":"991","id":"2d5c5fa0-4eca-42e5-b669-0cc5d51e4b53","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"d1f956fe-a7fe-47b9-9cce-fa78f034c155","keyword":"明胶微球","originalKeyword":"明胶微球"},{"id":"1fd1c275-63aa-469a-93fd-ff63ef71fe0b","keyword":" composite microspheres","originalKeyword":" composite microspheres"},{"id":"37fa6e45-71e1-4b33-a2ee-a2e0ba429d7d","keyword":" hollow microspheres","originalKeyword":" hollow microspheres"},{"id":"47fe1655-6577-4df4-b610-286f971167f8","keyword":" layer-by-layer self-assembly","originalKeyword":" layer-by-layer self-assembly"},{"id":"98e03530-dd9e-4d1d-9bef-a6efa2c0c20f","keyword":" slow-releasing effect","originalKeyword":" slow-releasing effect"}],"language":"zh","publisherId":"1000-324X_2004_5_9","title":"以明胶为模板制备复合空腔微球","volume":"19","year":"2004"},{"abstractinfo":"以明胶微球为模板, 采用层层自组装技术制备了明胶/SiO2/PAH复合微球, 并用热水溶解模板得到了SiO2/PAH复合空腔微球.通过用zeta电位、TEM、IR、TG等测试手段对其样品进行表征分析.结果表明, SiO2/PAH有效地组装在明胶微球上, 形成了核壳式结构, 模板去除后得到空腔结构.在溶解模板的过程中, 通过对明胶水解产物氨基酸含量的测定, 发现SiO2/聚电解质的存在具有一定的缓释性.","authors":[{"authorName":"丁素丽","id":"1510d4e8-2fde-45c8-a14d-d4a3f6739353","originalAuthorName":"丁素丽"},{"authorName":"朱以华","id":"07c03055-e1a1-4d47-8192-c29c95bc4d4c","originalAuthorName":"朱以华"},{"authorName":"杨晓玲","id":"2c39296a-4f76-4e19-a28b-3d5c0493651e","originalAuthorName":"杨晓玲"}],"doi":"10.3321/j.issn:1000-324X.2004.05.005","fpage":"991","id":"af1507c0-5be6-4cd8-ab94-5c493440a7b5","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9ae04b2b-e1f8-4f43-a0c1-6cf49b02171e","keyword":"明胶微球","originalKeyword":"明胶微球"},{"id":"02805905-d818-4978-8967-a1ddf76cf4f8","keyword":"复合微球","originalKeyword":"复合微球"},{"id":"6a953cb2-78c5-4f21-a3ed-7930c8ec781b","keyword":"空腔微球","originalKeyword":"空腔微球"},{"id":"ffa8d268-dfca-4a9a-8b01-74894afa30e8","keyword":"层层自组装","originalKeyword":"层层自组装"},{"id":"c81b28df-2ef7-42d6-a0d5-dbefdfd1a6b7","keyword":"缓释性","originalKeyword":"缓释性"}],"language":"zh","publisherId":"wjclxb200405005","title":"以明胶为模板制备复合空腔微球","volume":"19","year":"2004"}],"totalpage":16,"totalrecord":157}