J.X.Dong
,
M.C.Zhang
,
Y.P.Zeng
,
X.S.Xie
金属学报(英文版)
Alloy 718 is a precipitation strengthened nickel-hased superalloy based on the precipitation of γ’’-Ni3Vb(DO22 structure) and γ'-Ni3(Al, Ti) (Ll2 structure) phases. Creep crack growth rate (CCGR) was investigated after high temperature exposure at 593, 650 and 677℃ for 2000h in Alloy 718. In addition to the coalescence of γ'/γ'' and the amount increasing of 6 phase, the existence of a bcc chromium enriched α-Cr phase was observed by SEM, and the weight fraction of α-Cr and other phases were determined by chemical phase analysis methods. The CCGR behavior and regulation have been analyzed by means of strength and structure analysis approaches. The experimental results show higher the exposure temperature and longer the exposure time, lower the CCGR. This is probably attributed to the interaction of material softening and brittling due to complex structure changes during high temperature exposure. Therefore,despite α-Cr phase formation and amount enhancement were run in this test range. It seems to us a small amount of α-Cr will be not harmful for creep crack propagation resistance, which is critical for disk application in aircraft and land-based gas turbine.
关键词:
alloy 718
,
null
,
null
J.H.Thndermann(Inco Alloys International
,
Inc.
,
Huntington
,
WV 25705
,
USA Manuscript received 26 August 1996)
金属学报(英文版)
Low thermal expansion superalloys have been used for a number of years in a variety of applications, including gas turbine engines. The low thermal expansion characteristics of the most widely used class of materials are derived from the ferromagnetic characteristics of Ni, Fe, and Co-based austenitic matrices containing little or no Cr.Alloy developments have been aimed at improving the oxidation resistance and stress accelerated grain boundary oxygen (SAGBO) attack.INCONEL alloy 783 is an oxidation resistant, low coefficient of thermal expansion superalloy developed for gas turbine applications. Alloy 783 represents a culmination in the development, of an alloy system with very high alumtnum content that, in addition to forming γ′,causes βaluminide phase precipitation in the austenitic matrix.This type of structure can be processed to resist both SAGBO and general oxidation,while providing low thermal expansion and useful mechanical properties up to 700℃.Key aspects of the alloy's development are presented.
关键词:
:coefficient of thermal expansion
,
null
,
null
,
null
,
null
,
null
,
null
,
null