{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用热轧制备晶粒尺寸为0.1~0.5μm的细晶Ti-55511近β钛合金,利用SEM和TEM等研究热处理工艺对细晶合金显微组织和力学性能的影响。结果表明,在350~650℃的温度条件下,合金强度和硬度随温度的升高呈现先增高后降低的趋势,在450℃时达到峰值强度1486.09 MPa;在450℃退火时,随着退火时间的延长,合金强度首先急剧上升至1536 MPa后趋于稳定,伸长率呈现先增加后下降的趋势;合金在退火过程中主要经历动态回复过程,未发生明显的粗化长大现象,晶粒尺寸均小于1μm。动态回复过程在消除加工硬化的同时促进了晶界/相界的稳定化,增强细晶强化作用;退火过程中发生α→α2和β→ω→α相变过程,第二相粒子弥散强化效应增强。但是当第二相粒子尺寸增大至一定程度时,会显著降低合金的塑性。退火过程中合金力学性能的变化与强化机制的作用有关。","authors":[{"authorName":"","id":"8c9bf781-baff-4143-87c4-27b278b9b2cb","originalAuthorName":"李超"},{"authorName":"张晓泳","id":"cd2e4a0c-e891-42b5-9d1d-b45c0f8878dc","originalAuthorName":"张晓泳"},{"authorName":"志友","id":"ec98a392-7360-4a21-9ee5-cee032f2b89d","originalAuthorName":"李志友"},{"authorName":"周科朝","id":"eddf7e0a-7db6-460e-bcd3-3c0d7f9eaab4","originalAuthorName":"周科朝"}],"doi":"","fpage":"1251","id":"38e618c9-2d17-4a06-8ab5-5b9560ac04ad","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"de833089-d4e3-4030-bb06-b369a1b74c79","keyword":"Ti-55511合金","originalKeyword":"Ti-55511合金"},{"id":"f2bf8414-8ebb-4221-a846-e1c78a170cc2","keyword":"细晶","originalKeyword":"超细晶"},{"id":"58633f1b-b8e6-4c81-a564-f1074bef70fe","keyword":"热处理","originalKeyword":"热处理"},{"id":"eb56b3e3-b3f9-4c77-8c56-499414219180","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"cfb36e2b-9313-4cff-8858-d7e31d6d8182","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"zgysjsxb201405018","title":"热处理对细晶Ti-55511近β钛合金显微组织和力学性能的影响","volume":"","year":"2014"},{"abstractinfo":"采用热轧制备晶粒尺寸为0.1~0.5 μm细晶Ti-55511近β钛合金,利用SEM、TEM等手段研究热处理工艺对细晶合金显微组织和力学性能的影响.结果表明,在350~650℃的温度条件下,合金强度和硬度随温度的增加呈现先增高后降低的趋势,在450℃达到峰值1486 MPa;在450℃温度退火时,随着退火时间的延长,合金强度首先急剧上升至1536 MPa后趋于稳定,延伸率呈现先增加后下降的趋势.显微组织分析表明,合金在退火过程中主要发生回复现象,未发生明显的粗化长大现象,晶粒尺寸均<lμm.回复过程在消除加工硬化的同时促进了晶界/相界的稳定化,提高细晶强化作用;退火过程中发生的α→α2和β→ω→α相变过程,第二相粒子弥散强化效应增强.但是当第二相粒子尺寸增加至一定尺寸时,会显著降低合金的塑性.退火过程中合金力学性能的变化与强化机制的作用有关.","authors":[{"authorName":"","id":"7d2c0b69-4f19-4e82-b3ac-672d7c797031","originalAuthorName":"李超"},{"authorName":"张晓泳","id":"a53e626c-1f50-42c6-b6ab-e1338d0c027d","originalAuthorName":"张晓泳"},{"authorName":"志友","id":"c5f10571-404f-45e3-824d-8ac0ea76383a","originalAuthorName":"李志友"},{"authorName":"周科朝","id":"86228b14-1a48-47b1-8d9b-da1c86f4a0a9","originalAuthorName":"周科朝"}],"doi":"","fpage":"327","id":"6a0f65f9-a3f3-4798-8390-07fff0987ad2","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"45248b1e-aab8-4196-bd12-c9ecec6836ea","keyword":"Ti-55511合金","originalKeyword":"Ti-55511合金"},{"id":"05f91efd-5d1c-4102-b493-99c9506763de","keyword":"细晶","originalKeyword":"超细晶"},{"id":"c692a974-b201-4b47-a0d1-520a1f928d24","keyword":"热处理","originalKeyword":"热处理"},{"id":"93f6fea2-930a-4614-a023-c7e2e736a537","keyword":"组织","originalKeyword":"组织"},{"id":"c04cfd4b-25b0-4e00-b7af-0bf49226a308","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"xyjsclygc201502014","title":"热处理对细晶Ti-55511近β钛合金显微组织和力学性能的影响","volume":"44","year":"2015"},{"abstractinfo":"针对Ti-6Al-4V合金板材塑成形能耗高、效率低的问题,提出了一种脉冲电流辅助塑成形工艺.该工艺将成形坯料直接串联到脉冲电流回路,利用脉冲电流迅速将坯料加热至塑成形温度.通过脉冲电流加热实验,分析了平均脉冲电流密度对坯料温度及升温速率的影响.结果表明,采用该加热方式可将坯料加热时间从数十分钟缩短至几十秒,能量消耗降至传统工艺的20%左右,极大地提高了加热效率、降低了能耗,实现了节能环保的绿色塑成形技术.利用该工艺成形了Ti-6Al-4V合金双半球结构,并分析了在脉冲电流辅助工艺条件下细晶杰Ti-6Al-4V合金的塑变形机制.","authors":[{"authorName":"","id":"5dcae75c-4705-46be-b987-13b5ffbefbf7","originalAuthorName":"李超"},{"authorName":"张凯锋","id":"42f872a3-8326-4c97-831f-cc14891259e3","originalAuthorName":"张凯锋"},{"authorName":"蒋少松","id":"7cb6000e-aa66-4c92-ab71-5bedadc9b6b9","originalAuthorName":"蒋少松"}],"doi":"","fpage":"1400","id":"fc1e12a6-3ab1-409e-8656-b35cde39f6cc","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"6cec6ded-88d2-4cb2-bf93-fb365bf2547f","keyword":"脉冲电流加热","originalKeyword":"脉冲电流加热"},{"id":"0abdea16-b4c7-4d87-8f3b-84440b453028","keyword":"塑成形","originalKeyword":"超塑成形"},{"id":"2cd37bc7-f821-4bb9-8178-fcae96177d81","keyword":"Ti-6Al-4V合金","originalKeyword":"Ti-6Al-4V合金"}],"language":"zh","publisherId":"xyjsclygc201208018","title":"Ti-6Al-4V合金双半球结构脉冲电流辅助塑成形","volume":"41","year":"2012"},{"abstractinfo":"将硝酸镁、硝酸铝、尿素按物质的量比为126.66制得透明混合前驱液,用低温燃烧技术与微波加热技术相结合的方法制备了高纯度、低团聚的镁铝尖晶石(MgAl2 O4)粉体。研究了燃烧反应过程中,微波输出功率(200、400、600、700 W)对MgAl2 O4粉体晶体结构、形貌及比表面积的影响。结果表明:微波高效加热方式导致燃烧反应瞬间产生大量气体,促进了MgAl2 O4细颗粒的形成。同时,随着微波输出功率的增加,尿素氧化加速,利于MgAl2 O4晶粒的生长发育。在微波功率700 W,微波时间2 min的条件下,可制备结晶完整,粒度分布均匀(平均晶粒尺寸为56.03 nm)的MgAl2O4粉体。","authors":[{"authorName":"王朔","id":"6a497a7d-fa33-4187-bc29-d4e48cc5f932","originalAuthorName":"王朔"},{"authorName":"余俊","id":"a8cf549e-ed83-4c9a-9fa7-9b372ffe8a27","originalAuthorName":"余俊"},{"authorName":"赵惠忠","id":"7e44ce1a-c821-421f-95e6-5fa42a150e8b","originalAuthorName":"赵惠忠"},{"authorName":"","id":"b589071b-ac55-4135-b40b-bf5cea79a914","originalAuthorName":"李超"},{"authorName":"王斌斌","id":"c03ef978-07f1-42df-a265-f2e9815d7a41","originalAuthorName":"王斌斌"},{"authorName":"段连威","id":"8666e08a-972f-4944-b91f-8c0c64cf55ca","originalAuthorName":"段连威"}],"doi":"10.3969/j.issn.1001-1935.2014.06.006","fpage":"421","id":"1434810d-1869-4fc5-8d13-2ff5921f19a4","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"4db22c28-ca65-4417-b5fa-32592c3fb586","keyword":"镁铝尖晶石","originalKeyword":"镁铝尖晶石"},{"id":"7e33d5c6-1775-488d-9149-61ea14e6ed6c","keyword":"低温燃烧法","originalKeyword":"低温燃烧法"},{"id":"322525eb-9607-4157-bb57-8a588ef36dee","keyword":"微波加热","originalKeyword":"微波加热"},{"id":"ed1dd667-dff2-4757-88c0-25ec3d18d4cf","keyword":"晶体生长","originalKeyword":"晶体生长"}],"language":"zh","publisherId":"nhcl201406006","title":"微波辅助溶液燃烧法制备 MgAl2 O4粉体","volume":"","year":"2014"},{"abstractinfo":"建立了气相色谱-三重四极杆质谱(GC-MS/MS)同时测定烟丝中73种香气物质的分析方法.样品用无水乙醚振荡提取,提取液经过滤后直接进入DB-5MS色谱柱(30 m×0.25 mm, 0.25 μm)分离,通过优化质谱参数,可有效降低复杂基质和重叠峰的干扰,同时采用多反应监测(MRM)模式测定,内标法定量.结果表明,目标物在各自的线性范围内线性关系良好(r2>0.99),低、中、高3个水平的加标回收率为70.0%~122.3%,相对标准偏差(RSD)为1.6%~20.4%.该方法具有前处理简单、准确灵敏的特点,适用于烟丝样品中73种香气物质的检测.","authors":[{"authorName":"许永","id":"dfc3437a-af59-407a-a969-dc68b1abc985","originalAuthorName":"许永"},{"authorName":"蒋次清","id":"c482e7bf-9394-44cd-977b-9a7903647631","originalAuthorName":"蒋次清"},{"authorName":"","id":"dc134fb0-3f09-4daf-9fc5-d34002d2d40a","originalAuthorName":"李超"},{"authorName":"吴亿勤","id":"249d84fe-a2e6-40d1-9c74-af1c6fc9d0dd","originalAuthorName":"吴亿勤"},{"authorName":"张丹","id":"36a43477-7d61-4167-aeab-e0d96409bff6","originalAuthorName":"张丹"},{"authorName":"邹楠","id":"69afeff8-3edf-4bd1-9d41-cd1b7e687ef2","originalAuthorName":"邹楠"},{"authorName":"张承明","id":"56458ace-513f-4ea2-977a-7ac9286bd049","originalAuthorName":"张承明"},{"authorName":"秦云华","id":"81465ec0-da65-4476-ab5e-db2c0f582381","originalAuthorName":"秦云华"},{"authorName":"缪明明","id":"bd78cc48-ee67-4371-bf17-83b22c178887","originalAuthorName":"缪明明"},{"authorName":"蒋薇","id":"61bea9d5-2c9b-4cee-b6d5-acd07d019106","originalAuthorName":"蒋薇"}],"doi":"10.3724/SP.J.1123.2016.10047","fpage":"445","id":"efc31f83-14e3-46e6-8371-c395b68b6791","issue":"4","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"09138130-2f11-45e8-8c15-0571dfb27f93","keyword":"气相色谱-三重四极杆质谱","originalKeyword":"气相色谱-三重四极杆质谱"},{"id":"e03e666c-e49f-4132-9618-8f357d4f562c","keyword":"多反应监测","originalKeyword":"多反应监测"},{"id":"eb151d5d-b90d-46cb-bde4-9a0a3e43ee71","keyword":"烟丝","originalKeyword":"烟丝"},{"id":"b5ddcaa8-4409-462b-9079-1be65e648dcc","keyword":"香气物质","originalKeyword":"香气物质"}],"language":"zh","publisherId":"sp201704013","title":"气相色谱-三重四极杆质谱法同时测定烟丝中73种香气物质","volume":"35","year":"2017"},{"abstractinfo":"采用转炉-ANS精炼-连铸工艺生产低碳铝镇静钢,ANS处理后钢液T[O]含量在(35~56)×10-6之间,铸坯T[O]含量在25×10-6左右.钢液氮含量与转炉出钢过程预脱氧加铝量有关,在钢液氮含量非常低的情况下,ANS处理后钢液仅增氮3×10-6.铸坯中主要的非金属夹杂物为微小的块状Al2O3夹杂物和少量较小尺寸的簇群状Al2O3夹杂物,铸坯中尺寸大于50 μm的大型非金属夹杂物含量低于1 mg/(10 kg).","authors":[{"authorName":"袁晓鹏","id":"266589a3-1a3c-45fe-a82f-9594965c8856","originalAuthorName":"袁晓鹏"},{"authorName":"宏","id":"14a89937-559a-4e92-b395-827d266414ec","originalAuthorName":"李宏"},{"authorName":"王新华","id":"2febdadf-437c-41e9-be91-5c012c0eb575","originalAuthorName":"王新华"},{"authorName":"","id":"aecf2eb8-d3dc-453f-9524-53efd9fc8429","originalAuthorName":"李超"},{"authorName":"马学中","id":"c64be05b-3cbb-42dc-83b2-ebef8ae21046","originalAuthorName":"马学中"},{"authorName":"孙群","id":"b8fed90d-63a4-4c0d-a546-f859b8cb2720","originalAuthorName":"孙群"},{"authorName":"孟劲松","id":"22bef614-4cbf-4de9-8c4d-3052744fb3f0","originalAuthorName":"孟劲松"},{"authorName":"王霆","id":"c20592be-204d-408a-b929-d8c7dcd6dc9b","originalAuthorName":"王霆"},{"authorName":"张富强","id":"6ad33e41-08b5-4369-8778-d7db12912ba5","originalAuthorName":"张富强"}],"doi":"","fpage":"15","id":"8da68dde-2200-465f-af82-5b2ce3d4f54b","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"aa38c182-aa7b-4229-bc53-914a5f2502a8","keyword":"低碳铝镇静钢","originalKeyword":"低碳铝镇静钢"},{"id":"67128f01-f412-4d16-8244-4217fbaaccaa","keyword":"连铸","originalKeyword":"连铸"},{"id":"c90acdda-1783-40fe-8c12-354c3be9d024","keyword":"非金属夹杂物","originalKeyword":"非金属夹杂物"}],"language":"zh","publisherId":"gt200311005","title":"转炉-ANS-连铸工艺生产低碳铝镇静钢洁净度研究","volume":"38","year":"2003"},{"abstractinfo":"采用一种简单的方法制备了铁掺杂氧化锌的粉末,将其作为光催化剂对甲基橙(MO)的光催化降解进行了研究.通过X射线衍射图谱(XRD)、紫外可见吸收光谱(UV-vis)、扫描电子显微镜(SEM)对所合成样品进行了表征.结果表明,采用铁掺杂氧化锌光催化剂,甲基橙的光催化降解显示出比纯氧化锌催化剂更高的光催化降解率,这被归因于铁的掺杂使颗粒的表面性质改变,有效的阻止了团聚,改善了紫外可见光的吸收.铁掺杂氧化锌光催化剂是甲基橙光催化降解过程的一种有潜力的光催化剂.","authors":[{"authorName":"吴诗德","id":"748234ea-170b-4195-9781-36e09b0b3500","originalAuthorName":"吴诗德"},{"authorName":"","id":"06523640-36d8-4ec3-9122-f5db2a7ec04b","originalAuthorName":"李超"},{"authorName":"方少明","id":"969bc112-62ae-4779-a130-c769a3958b37","originalAuthorName":"方少明"},{"authorName":"郑先君","id":"2d44f448-2996-418a-8344-c52ba2e7e2ff","originalAuthorName":"郑先君"},{"authorName":"韩周祥","id":"03641112-0058-4f1b-afff-1d1a93469b1f","originalAuthorName":"韩周祥"},{"authorName":"于智铄","id":"9f50bf09-44c8-44b1-beb0-4fa6846fcaa8","originalAuthorName":"于智铄"},{"authorName":"王焕新","id":"5106c72a-fb53-401c-958d-9878c8900e25","originalAuthorName":"王焕新"},{"authorName":"陈荣峰","id":"24e70cbd-6768-4162-a9b0-06d0c4a93011","originalAuthorName":"陈荣峰"}],"doi":"","fpage":"444","id":"b2fba3cd-538e-4376-b53f-9304ce8dd141","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"7208e149-fdb0-4046-9103-d9dd4ea9db2f","keyword":"铁掺杂ZnO","originalKeyword":"铁掺杂ZnO"},{"id":"780c3b93-fc4c-4477-9d85-81e562333d2b","keyword":"甲基橙","originalKeyword":"甲基橙"},{"id":"6a664dc3-1d47-4220-b551-a321a59873d5","keyword":"光催化降解","originalKeyword":"光催化降解"}],"language":"zh","publisherId":"rgjtxb98201002034","title":"铁掺杂氧化锌的制备及其对甲基橙的光催化降解","volume":"39","year":"2010"},{"abstractinfo":"固相反应法的固有缺陷使其磷酸铁锂产物难以规模用于动力锂离子电池领域。包括沉淀法和水热法在内的液相合成途径正在该领域扮演越来越重要的角色。使用不同的沉淀方法制备了纳米磷酸铁锂材料,用粉末X射线衍射、场发射电子显微镜、充放电测试等方法进行了对比研究,对沉淀方法进行了优选并解释了所制材料性能差别的机理。详细研究了煅烧温度对磷酸铁锂材料的平均粒径、粒径分布、晶粒形貌等方面的影响。","authors":[{"authorName":"邢宇","id":"8f5e1491-7608-4bca-8d4d-da146c207f04","originalAuthorName":"邢宇"},{"authorName":"徐蓓","id":"ad0949d4-58b7-473a-9860-62dd6f3525a1","originalAuthorName":"徐蓓"},{"authorName":"刘振新","id":"0f5e6614-7ddc-4aa5-ab3a-cd097f2cf28f","originalAuthorName":"刘振新"},{"authorName":"","id":"51dd7d0e-23b1-4f6c-b89c-a02b0117a362","originalAuthorName":"李超"},{"authorName":"张爱勤","id":"b97a750b-25f1-41d4-a912-3c1af7469ba0","originalAuthorName":"张爱勤"},{"authorName":"张林森","id":"d5440bff-eda0-493f-901f-bd790dcf3d6c","originalAuthorName":"张林森"},{"authorName":"王立臻","id":"a2b3c5d7-ff06-4e28-acfb-05f9256d4d27","originalAuthorName":"王立臻"},{"authorName":"方少明","id":"bb62db68-f71f-49e9-b4e5-e71e5f75c11c","originalAuthorName":"方少明"}],"doi":"","fpage":"2347","id":"e62f455d-5931-463c-9fb9-614ff894f9c6","issue":"17","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"40906b7d-2249-4f68-b3bb-488cd8ca2586","keyword":"磷酸铁锂","originalKeyword":"磷酸铁锂"},{"id":"a63d5331-397a-4585-82c1-8cb43745c80d","keyword":"液相合成","originalKeyword":"液相合成"},{"id":"2359a846-e1f0-4047-99a7-a541f8c2b3f7","keyword":"沉淀方法","originalKeyword":"沉淀方法"},{"id":"04c0b4be-4296-4b59-b293-41ac890f7a01","keyword":"锂离子电池","originalKeyword":"锂离子电池"}],"language":"zh","publisherId":"gncl201217018","title":"液相合成纳米磷酸铁锂材料:沉淀方法与煅烧温度的影响","volume":"43","year":"2012"},{"abstractinfo":"石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点.由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域.综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景.","authors":[{"authorName":"吴诗德","id":"84ba483d-2133-4ca0-96f6-975b32972a1a","originalAuthorName":"吴诗德"},{"authorName":"宋彦良","id":"9162b5c5-d45d-4ecf-9c82-1c1ff93c1f49","originalAuthorName":"宋彦良"},{"authorName":"","id":"7192d1ea-2046-4a8d-9bb5-6ef4ab4abf08","originalAuthorName":"李超"},{"authorName":"王力臻","id":"e77dad7e-d8f8-4260-a7e8-6b87c95e9cd2","originalAuthorName":"王力臻"},{"authorName":"夏同驰","id":"05c07b0c-8d1a-40c7-8938-9fa2fa692b96","originalAuthorName":"夏同驰"},{"authorName":"卫应亮","id":"0c3b1710-ada7-4735-ae48-f28da738eeb9","originalAuthorName":"卫应亮"},{"authorName":"陈荣峰","id":"0b09a7a1-810d-4fa3-bdf1-673a2f6e1ef7","originalAuthorName":"陈荣峰"}],"doi":"","fpage":"55","id":"66d7eb6c-d839-4c68-8500-9c698876cb76","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"b9401616-6ca1-482d-82fc-036d7490426f","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"a6065a4f-e4cf-4949-ba46-d254af353a36","keyword":"结构","originalKeyword":"结构"},{"id":"16d4f7f1-5f8c-491e-98e2-7d2bc13961da","keyword":"性质","originalKeyword":"性质"},{"id":"a54cac30-6d2e-488e-b232-b794a8e0eabd","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"ec0301ba-98a4-4335-8b08-017f4ad27bb0","keyword":"电化学","originalKeyword":"电化学"},{"id":"bff62855-5b91-49bc-8a25-75a81958d228","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb201103013","title":"石墨烯材料的制备及其在电化学领域的应用","volume":"25","year":"2011"},{"abstractinfo":"石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点.由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域.综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景.","authors":[{"authorName":"吴诗德","id":"4ffc757f-57c5-4a38-9afb-4aa8f066c8f9","originalAuthorName":"吴诗德"},{"authorName":"宋彦良","id":"07121561-9340-430c-b9f1-fb2c68128e43","originalAuthorName":"宋彦良"},{"authorName":"","id":"53781971-5018-404d-8fae-0d6a83971771","originalAuthorName":"李超"},{"authorName":"王力臻","id":"80f43247-618e-4db0-8d5e-0370fb219202","originalAuthorName":"王力臻"},{"authorName":"夏同驰","id":"f4dad825-ad0b-4f1c-ae92-d62813189990","originalAuthorName":"夏同驰"},{"authorName":"卫应亮","id":"ea23144b-7663-4def-b3e7-906808c0fd8e","originalAuthorName":"卫应亮"},{"authorName":"陈荣峰","id":"686e7224-5e05-48ea-96f9-61f7cd0bb4b6","originalAuthorName":"陈荣峰"}],"doi":"","fpage":"55","id":"9369242f-ff8d-4a9b-8374-29a504f8f669","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"aa3a0c26-b0c3-40da-a9ba-aedce0c95af3","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"d2b4dd6b-ea42-4283-bf53-43672cb73767","keyword":"结构","originalKeyword":"结构"},{"id":"eb670000-0b7f-421f-a47c-70e7bfe79e4a","keyword":"性质","originalKeyword":"性质"},{"id":"14e46498-a409-4618-8231-480e35412c77","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"1b0a2fa0-5773-48b2-a798-88e06287c74c","keyword":"电化学","originalKeyword":"电化学"},{"id":"f95aff2e-faaf-44aa-b8d7-6969c7fe8924","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb201105013","title":"石墨烯材料的制备及其在电化学领域的应用","volume":"25","year":"2011"}],"totalpage":546,"totalrecord":5452}