姜枫
,
邓生财
,
牛磊
,
肖国民
催化学报
doi:10.1016/S1872-2067(12)60650-0
通过等体积浸渍法制备了Nb2O5,MgF2,TiO2和SiO2负载和未负载的钒铬氧化物催化剂,并应用X射线衍射、N2吸附-脱附、H2程序升温还原和NH3程序升温脱附对催化剂进行了表征.结果表明,催化剂比表面积较大时有利于CrVO4-Ⅰ(单斜)的生成,比表面积较小则有利于CrVO4-Ⅲ(斜方)的生成.在310-400℃下3-甲基吡啶氨氧化制备3-氰基吡啶反应中,具有较高催化活性的催化剂与V物种还原性较高和表面活性位数量较多有关;而高的3-氰基吡啶选择性则与催化剂表面较低的酸性密切相关.升高反应温度可大幅度提高催化剂的活性,且其选择性基本不变.
关键词:
氨氧化
,
3-甲基吡啶
,
3-氰基吡啶
,
载体
,
钒铬氧化物
吴惠
,
彭焘
,
寇宗魁
,
张建
,
程坤
,
何大平
,
潘牧
,
木士春
催化学报
doi:10.1016/S1872-2067(14)60211-4
采用氯化法制备石墨烯-无定型碳复合材料(GNS@a-C),并用作质子交换膜燃料电池(PEMFC)氧还原反应Pt催化剂的载体.结果显示,所制Pt/GNS@a-C催化剂与传统商业催化剂Pt/C相比,有较好的活性和较高的稳定性:质量活性(0.121 A/mg)几乎是Pt/C (0.064 A/mg)的两倍.更重要的是,该新型催化剂加速4000圈后其电化学活性面积保留了最初的51%,与Pt/C的33%相比,前者有更好的电化学稳定性,显示它在PEMFC中将具有较好的应用潜力.
关键词:
低温燃料电池
,
载体
,
核壳结构
,
氧还原反应
杜磊
,
孔凡鹏
,
陈广宇
,
杜春雨
,
高云智
,
尹鸽平
催化学报
doi:10.1016/S1872-2067(16)62480-4
高分子膜燃料电池是一类很有发展前景的可提供可再生能源的装置,这主要得益于它的零排放、无毒性和较低的操作温度。在高分子膜燃料电池的部件中,电催化剂对于提高输出能量密度和/或工作寿命起到至关重要的作用。在过去的几十年中,科学家提出了很多办法和策略以解决电催化剂的活性和稳定性问题。尽管基于聚电解质的层层自组装制备膜电极的方法已经研究多年,但聚电解质在催化剂制备方面的作用仍需更多的关注。最近几年,已有很多人将聚电解质应用于催化剂设计制备,其中聚二烯丙基二甲基氯化铵(PDDA)的研究较为系统,因此,本文重点关注 PDDA,目的是总结出一些有用的信息,以便为该领域未来的研究发展提供一些参考。
本文收集了一些聚电解质在电催化剂纳米颗粒和载体材料两方面应用的文献,不仅讨论了聚电解质在催化剂颗粒粒径、形貌和组成方面的影响,还总结了其在修饰载体材料方面的应用。最后,本文还展望了聚电解质在催化剂设计制备领域的发展。通常,聚电解质有三个主要的特征:(1)在水溶液中容易解离为带相反电荷的长链结构和离子;(2)长链结构中带有独特的官能团结构;(3)当溶液浓度变化时其结构会发生转变。因此,聚电解质可以在电催化剂层面作为纳米反应器来控制金属纳米颗粒的生长,可功能化或掺杂纳米颗粒以及载体材料,可以保护纳米颗粒或载体不衰减,同时还可使其他物质带电,利用自组装方法制备有序的催化剂。然而,相关研究大都集中于 PDDA,因此,其他聚电解质还需要进一步的系统研究,以便了解聚电解质特征、制备的催化剂以及催化性能之间的关系。
PDDA在该领域的研究还需在如下几个方面继续进行。(1)聚电解质通常不是电子的良导体,其在催化剂表面的吸附会造成活性位的损失。尽管已经提出一些相对有效的方法,例如热处理、化学洗涤或光降解等,但仍需继续进行系统的研究和提出有效的方法。(2)先进的研究手段,如原位观测和模拟等还需进一步发展,尤其是研究聚电解质在催化剂形成过程中的功能和影响,这有利于构效关系的研究。(3)目前该领域制备的催化剂大都使用半电池或三电极体系来评价,但与实际的燃料电池装置有本质不同。由于复杂的工作条件,例如水热管理、不同组件的界面耦合等,聚电解质制备催化剂在膜电极中有可能不能表现出优良的性能。因此,上述催化剂的研究还应考虑燃料电池的实际运行情况。
关键词:
聚电解质
,
纳米颗粒
,
载体
,
可控合成
,
功能化
曹红霞
,
张军
,
郭成龙
,
陈经广
,
任相坤
催化学报
doi:10.1016/S1872-2067(17)62862-6
作为煤制天然气的核心技术之一,CO甲烷化工艺的开发基础便是高效催化剂的研制.目前,CO甲烷化催化剂主要采用Ni作为活性组分,但如何保持其具有较高的催化活性和优异的高温稳定性,仍为当今不得不面临的棘手问题.本文以乙二醇改性的三维介孔KIT-6为载体,利用其较高的比表面积、可调孔径、独特的双螺旋三维孔道结构等特点,通过湿式浸渍法成功制备了由助剂改性的Ni基催化剂,探讨了V,Ce,La,Mn等不同助剂对Ni基催化剂CO甲烷化催化性能的影响.分别采用X射线衍射、氢气程序升温还原、氢气程序升温脱附、傅里叶变换红外光谱、透射电子显微镜、能量色散X射线光谱、激光拉曼光谱和热重分析等手段对催化剂特性进行了表征.结果显示,Ni-V/KIT-6具有最高的Ni纳米粒子分散性(26.5%)和催化还原性,产生了最多的活性位,同时,Si–O–V的形成增强了金属-载体间相互作用,并因载体的三维介孔限制效应而形成较小Ni纳米粒子,这些均有助于提升Ni基催化剂CO甲烷化的催化性能和稳定性.在常压、250–400 oC和60000 mL/(g·h)空速的实验条件下对催化剂进行了催化活性评价测试.结果表明,助剂提高了CO甲烷化低温催化活性,其中,Ni-V/KIT-6在350oC的条件下实现了CO的完全转化,CH4产率也高达85%;其在常压、500oC和60000mL/(g·h)空速的操作条件下所进行的稳定性测试结果还显示,Ni-V/KIT-6也具有优异的抗烧结和抗积碳能力,展示了良好的高温稳定性.因此,Ni-V/KIT-6是一种具有广阔应用前景的CO甲烷化催化剂.
关键词:
镍基催化剂
,
甲烷化
,
助剂
,
载体
,
三维介孔