Shiming HAO
,
Yuping REN
,
Hongxiao LI
,
Dapeng WANG
,
Gang ZHAO
材料科学技术(英文)
The effect of Cu addition on the spinodal decomposition of the Al-Zn alloy with symmetrical compositions has been investigated by X-ray diffraction analysis. It is found that the single fcc phase can be obtained in the AlZn alloy with the addition of 2 at. pct Cu after solution treatment at 400℃ and water quenching to room temperature. The modulation structure occurs in two types of alloys aged at room temperature for 30 min. The spinodal process remarkably slows down above or at the three phase equilibrium temperature, particularly at room temperature due to the addition of 2 at. pct Cu. The spinodal time increases by 20 times when aging at 300℃ and by more than 30 times when aging at room temperature.
关键词:
Al-Zn(-Cu) alloy
,
null
,
null
,
null
Qiming DONG
,
Dongmei ZHAO
,
Ping LIU
,
Buxi KANG
,
Jinliang HUANG
材料科学技术(英文)
Age hardening in Cu-3.2Ni-0.75Si(wt pct) and Cu-1.0Ni-0.25Si (wt pct) alloys from 723 to 823 K is studied. After an incubation period strengthening appears which is due to precipitates in the Cu-1.0Ni-0.25Si (wt pct) alloy. On other hand an immediate increase of the yield strength characterizes the aging of the alloy. This is followed by the regions of constant yield strength and further by a peak. The microstructure of the alloy was studied by, means of transmission electron microscope (TEM) and X-ray diffraction (XRD). Spinodal decomposition takes place followed by nucleation of the ordering coherent (Cu,Ni)3Si particles, further precipitation annealing coherent δ-Ni2Si nucleated within the (Cu,Ni)3Si particle. Any change of the yield strength can be described by an adequate change of the structure in the sample. The nature of the aging curves with a "plateau" is discussed. The formulas of Ashby and Labusch can be used to explain the precipitation.
关键词:
Copper alloy
,
null
,
null
,
null
,
null
,
null