余依玲
,
高保娇
,
李艳飞
催化学报
doi:10.1016/S1872-2067(12)60651-2
以甲基丙烯酸缩水甘油酯(GMA)为单体,以乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,采用悬浮聚合法制得交联聚甲基丙烯酸缩水甘油酯(CPGMA)微球,然后以4-羟基-2,2,6,6-四甲基哌啶氮氧自由基(4-OH-TEMPO)为试剂,使CPGMA微球表面的环氧基团发生开环反应,从而制得了TEMPO固载化微球TEMPO/CPGMA,考察了制备条件对固载化反应的影响,并采用多种方法对微球TEMPO/CPGMA进行了表征.将微球TEMPO/CPGMA与CuC1组成共催化体系,用于分子氧氧化苯甲醇,考察了反应条件对催化体系性能的影响.结果表明,以含环氧基团的聚合物微球CPGMA为载体,通过开环反应,可成功地实现TEMPO的固载化,开环反应属SN2亲核取代反应,适宜采用溶剂N,N'-二甲基甲酰胺和反应温度85℃.非均相催化剂TEMPO/CPGMA与助催化剂CuC1构成共催化体系,在室温、常压O2条件下可高效地将苯甲醇氧化为苯甲醛,产物选择性和产率分别为100%和90%.主催化剂TEMPO与助催化剂CuC1适宜的摩尔比为1:1.2;主催化剂适宜用量为0.90g.此外,TEMPO/CPGMA固体催化剂具有良好的循环使用性能.
关键词:
聚甲基丙烯酸缩水甘油酯
,
氮氧自由基
,
固载
,
醇氧化
,
分子氧
高保娇
,
张利琴
,
陈涛
催化学报
doi:10.1016/S1872-2067(15)60902-0
醇氧化为羰基化合物是有机合成工业中最重要的化学转变之一,在实验室研究和精细化工生产中都占有非常重要的地位.使用传统的化学计量强氧化剂(如CrO3, KMnO4, MnO2等),不但成本高及反应条件苛刻,还会产生大量污染环境的废弃物.因此,需要大力发展高效、绿色化的醇转变为羰基化合物的氧化途径.以2,2,6,6-四甲基哌啶氮氧自由基(TEMPO)为催化剂,分子氧为氧化剂,可在温和条件下绿色化地实现醇的氧化转变.该催化氧化作用的实质是TEMPO经过单电子氧化过程转化为相应的氮羰基阳离子,该阳离子是一个具有强氧化性的氧化剂,可将伯醇和仲醇分别快速地、高转化率、高选择性地氧化为对应的醛或酮.然而,目前使用的TEMPO大多为均相催化剂,虽然表现出良好的催化活性和选择性,但反应后难以分离回收,不能再循环使用,严重制约着这一催化体系的发展.本文将TEMPO化学键合在聚合物载体上,在非均相催化剂的作用下,以期实现环已醇的分子氧氧化,将其转变为环已酮.首先采用悬浮聚合法,制备了交联聚甲基丙烯酸缩水甘油酯(CPGMA)微球,该聚合物微球表面含有大量环氧基团,为实现TEMPO的固载化提供了条件.以4-羟基-2,2,6,6-四甲基哌啶氮氧自由基(4-OH-TEMPO)为试剂,使CPGMA微球表面的环氧基团发生开环反应,从而将TEMPO键合于微球表面,制得了固载有TEMPO的聚合物微球TEMPO/CPGMA.将此非均相催化剂与Fe(NO3)3组成共催化体系,应用于分子氧氧化环己醇的催化氧化过程,深入考察了该共催化体系的催化性能,并探索研究了催化氧化机理,考察了主要条件对催化氧化反应的影响.结果表明,共催化体系TEMPO/CPGMA+Fe(NO3)3可以有效地催化分子氧氧化环己醇的氧化过程,将环己醇转化为唯一的产物环己酮,显示出良好的催化选择性.助催化剂Fe(NO3)3化学结构中的Fe3+离子和NO3–离子两种物种均参与催化过程,共同发挥助催化剂的作用,伴随着两种价态铁物种Fe(Ⅱ)与Fe(Ⅲ)的转变以及NO3–与NO2–之间的转变,固载化的氮氧自由基TEMPO不断地转变为氮羰基阳离子,该氧化剂物种使环己醇的氧化反应不断地循环进行.对于共催化体系TEMPO/CPGMA+Fe(NO3)3的使用,适宜的反应条件为TEMPO与Fe(NO3)3的摩尔比为1:1,55°C,通入常压O2.反应35 h,环己酮的转化率可达到44.1%.因此,在温和条件下,使用固载化的TEMPO,有效地实现了环己醇向环己酮的转化.此外,固载化催化剂TEMPO/CPGMA在循环使用过程中表现出良好的重复使用性能.
关键词:
氮氧自由基
,
聚甲基丙烯酸缩水甘油酯
,
固载化
,
组合催化剂
,
环己醇氧化
,
分子氧