闻振浩
,
杨大强
,
杨帆
,
魏振浩
,
朱学栋
催化学报
doi:10.1016/S1872-2067(16)62523-8
对二甲苯(PX)是重要的有机化工原料,主要用于生产对苯二甲酸(PTA)和对苯二甲酸二甲酯(DMT), PTA和 DMT可经缩聚生产化纤、合成树脂和塑料等聚酯产品. PX主要通过甲苯歧化、二甲苯异构化或甲苯与 C9芳烃烷基转移等方式生产.由于三种二甲苯和乙苯的沸点接近,需要经过吸附分离或深冷分离才能得到高纯度的 PX,传统工艺物料循环量大,设备庞大,操作费用高.而通过甲苯和甲醇烷基化反应直接高选择性生成 PX,可大大降低成本,具有非常高的经济效益和研究价值.自1970年代以来,国内外众多科研院所对甲苯和甲醇烷基化催化剂进行了广泛研究,但催化剂选择性和稳定性仍需进一步提高.为了加深对甲苯和甲醇烷基化反应的认识,指导催化剂开发,有必要对甲苯和甲醇烷基化生成二甲苯的反应机理进行深入研究.当前甲苯和甲醇烷基化机理研究主要存在以下问题:(1)计算得到的能量多为电子能,而非自由能;(2)所采用的模型多为团簇模型,使用 ONIOM方法,对长程作用力描述不充分;(3)认为甲苯只有一种吸附状态;(4)没有考虑偕烷基化反应.本文采用周期性模型,通过密度泛函理论研究了 HZSM-5分子筛上甲苯和甲醇烷基化反应机理,通过计算熵得到了反应自由能,并考虑了偕烷基化反应.由于甲基的存在,在甲苯的吸附态中,甲基会伸向孔道的不同方向,因此我们认为甲苯有多种吸附态,而不同的吸附态会生成不同的二甲苯.结果表明,甲苯可以在对位、间位、邻位和偕位上通过协同机理或分步机理发生烷基化反应.在协同机理中,甲苯在对位、间位、邻位和偕位发生烷基化反应的自由能垒分别为167,138,139和183 kJ/mol.在分步机理中,甲醇脱水生成甲氧基的自由能垒为145 kJ/mol,是决速步骤;而甲苯和甲氧基对位、间位、邻位和偕位烷基化的自由能垒分别为127,105,106和114 kJ/mol.两种机理中 PX的生成能垒均比 MX和 OX高,与文献报道的结果不同.文献均认为, PX的生成能垒最低.一方面这可能是由于所采用模型的不同,本文采用周期性模型,能更充分考虑长程作用力的影响;另一方面可能是由于对甲苯吸附态的不同处理,我们认为甲苯有多种吸附态,不同的吸附态会生成不同的二甲苯,而文献均只考虑了一种甲苯吸附态.但是,在实验中, PX选择性最高.这可能是由于:(1) PX在 HZSM-5孔道的扩散速率比 MX和 OX高2–3个数量级;(2)甲苯和甲醇烷基化生成的 MX和OX迅速发生异构化反应生成 PX,异构化反应速率高于甲苯烷基化速率.两种机理中, C8H11+都是重要的中间物种,它可以反馈一个质子给分子筛骨架,生成二甲苯;也可以脱烷基生成甲烷和乙烯等气相产物.研究发现,甲烷的生成是由于 C8H11+物种中的一个 H质子从苯环上的碳原子转移到甲基上的碳原子造成的,计算得到的对位、间位和邻位 C8H11+生成甲烷的能垒分别为136,132和134 kJ/mol.由于十元环孔道的限制, HZSM-5孔道中很难通过甲苯歧化反应生成苯;偕烷基化生成的碳正离子有可能脱烷基生成乙烯和乙烷等产物,进而生成苯.碳正离子脱烷基反应生成了大量气相产物,造成反应液收降低.碳正离子脱烷基反应与甲醇制烯烃过程的烃池机理相一致,因此甲苯和甲醇烷基化反应也遵循烃池机理.
关键词:
甲苯
,
甲醇
,
对二甲苯
,
甲基化
,
密度泛函理论
,
烃池机理
党丹
,
王泽
,
林伟刚
,
宋文立
催化学报
doi:10.1016/S1872-2067(15)61074-9
苯甲醚作为重要的化学品和医药中间体而广泛应用于香料、调味剂及有机合成.液相法是传统的苯甲醚制备工艺,例如在碱性环境下,通过酚钠与硫酸二甲酯反应,溴苯与甲醇反应,酚钠与氯代甲烷反应均可制得苯甲醚.然而,这些方法具有环境处理负担较重和所用原料毒性较强等不足而备受限制.因此,环境友好的绿色苯甲醚合成工艺的开发成为必然,苯酚的气相烷基化工艺由此提出.其中,以碳酸二甲酯(DMC)为烷基化试剂的苯酚气相转化苯甲醚制备方法最受关注. DMC是常用的绿色高效烷基化试剂,但其价格相对较高,在一定程度上增加了苯甲醚制备工艺的复杂性和产品成本.鉴于DMC可由甲醇经氧化羰基化制得,因此以甲醇为烷基化试剂的苯酚气相烷基化转化制备苯甲醚方法成为另一研究热点.然而,与DMC的烷基化性能相比,以甲醇为烷基化试剂的反应产物分布较为复杂,作为苯酚O-烷基化(在苯酚的羟基氧原子上发生的烷基化)产物的苯甲醚相对较难获得,而苯酚的C-烷基化(在苯酚的芳环上发生的烷基化)产物甲基酚产率更易提高.总体而言,与DMC烷基化方法相比,以甲醇为烷基化试剂的苯酚气相转化制备苯甲醚方法有待改善,相关反应机理也更欠明晰,因此具有重要的研究价值.
本文研究了γ-Al2O3(AA)负载型催化剂上以甲醇为烷基化试剂的苯酚气相转化制备苯甲醚方法,考察了反应温度、气体空速、苯酚与甲醇配比以及催化剂中K负载量和焙烧温度等对反应性能的影响,并分析了该体系中的反应机理.研究表明,在 AA 上负载的8种化合物(NaCl, MgCl2, Fe2(SO4)3, Co(NO3)2, ZnCl2, La(NO3)3, Ce(NO3)3和KH2PO4)的催化剂中, KH2PO4/AA的催化性能最佳,相应催化剂中K离子负载量为7.53 wt%,于700 oC焙烧8 h.苯酚与甲醇气相反应过程中,苯甲醚最大收率出现在400–450 oC,且随甲醇与苯酚的摩尔比升高而增加,但随空速的提高而降低.另外,在KH2PO4/AA催化剂的高K含量,以及低温、高空速、低甲醇含量的物料配比的条件下,对苯酚的O-烷基化过程有利.产物除主产物苯甲醚以外,还有少量甲基苯酚、甲基苯甲醚以及二甲基苯酚等副产物.在K含量为7.53 wt%的KH2PO4/AA催化剂作用下,苯甲醚收率最高时反应条件为400–450 oC,空速小于0.18 h-1,甲醇与苯酚摩尔配比为5.本文所开发的催化剂制备方法简单,反应条件温和,产物收率较高,因此具有较好的应用前景. X射线衍射结果显示,经高温焙烧及固相反应后, KH2PO4/AA催化剂中产生了K3Al2(PO4)3新物相.推测该反应机理是酸性氧化铝促进甲醇脱羟基负离子以及K离子促进酚羟基脱氢质子,所形成的甲基正离子进一步与苯氧基负离子结合得到苯甲醚的“钾离子-酸”双功能催化作用过程.
关键词:
苯酚
,
甲醇
,
催化
,
苯甲醚
,
甲基化