欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(11)
  • 图书()
  • 专利()
  • 新闻()

水滑石类催化剂催化制氢及生物炼制

王伟 , 徐振新 , 郭章龙 , 江成发 , 储伟

催化学报 doi:10.1016/S1872-2067(14)60229-1

近年来,水滑石由于其独特的性质受到越来越多的关注。作为非均相固体催化剂,水滑石及其衍生物具有优良的催化性能,因此得到了广泛研究和应用。本文简述了水滑石的几种合成方法,重点介绍了水滑石类催化剂在催化制氢和生物炼制方面的应用,并预测了水滑石类材料在新材料合成及环境友好催化体系中的应用前景。

关键词: 水滑石 , 非均相催化剂 , 水蒸气重整 , 制氢 , 生物炼制 , 酯交换反应

编织芳基网络聚合物负载Rh催化剂上高碳烯烃氢甲酰化反应性能

姜淼 , 丁云杰 , 严丽 , 宋宪根 , 林荣和

催化学报 doi:10.1016/S1872-2067(14)60068-1

考察了编织芳基网络聚合物(KAPs)负载的Rh催化剂(Rh/KAPs)在高碳烯烃氢甲酰化反应中的催化性能。结果表明,三苯基膦-苯基底KAPs负载Rh催化剂(Rh/KAPs-1)具有优异的高碳烯烃氢甲酰化反应活性,产物醛收率显著高于Rh/SiO2催化剂。傅里叶变换红外光谱、热重、氮气吸附-脱附、X射线衍射、透射电子显微镜、13C核磁共振和31P核磁共振结果显示, Rh/KAPs-1催化剂具有优异的热稳定性及大的比表面积和多级孔道结构, Rh颗粒处于高度分散状态,并可在反应过程中形成均相催化活性物种。

关键词: 三苯基膦 , 编织芳基网络聚合物 , , 多相催化剂 , 高碳烯烃氢甲酰化

基于TiO2的绿色多相催化剂催化CO2与环氧化合物偶联反应

刘靖 , 王安琪 , 景欢旺

催化学报 doi:10.1016/S1872-2067(14)60110-8

金属离子掺杂纳米TiO2(M-TiO2, M = Zn2+, Cu2+, Co2+, Mn2+, Ni2+)在CO2与环氧化合物的偶联反应中表现出较高的催化活性。反应以四正丁基碘化铵(TBAI)为共催化剂,在无溶剂条件下进行。考察了反应温度、反应时间和CO2压力在Zn-TiO2/TBAI体系中对反应性能的影响。作为无毒的多相催化剂, Zn-TiO2可循环使用5次,其催化活性没有明显降低。

关键词: 二氧化碳 , 环氧化合物 , 环碳酸酯 , 多相催化剂 , 掺杂纳米二氧化钛

核壳结构Fe3O4@UiO-66-NH2磁性纳米复合材料的合成及其催化Knoevenagel缩合反应性能

张艳梅 , 戴田霖 , 张帆 , 张静 , 储刚 , 权春善

催化学报 doi:10.1016/S1872-2067(16)62562-7

金属有机骨架(MOF)材料是由过渡金属离子与有机配体通过配位键连接构成的高度有序的超分子化合物.这类材料比表面积大,孔隙率高,热稳定性好,而且具有规整可调控的孔结构、易于功能化的骨架金属离子和有机配体,在多相催化领域具有潜在应用前景.将纳米尺寸的MOF材料等多孔材料作为催化剂,可以提高反应传质效率,从而提高催化反应活性,但纳米MOF催化剂的分离和回收困难.将磁性纳米粒子和MOF材料组装成核壳结构的磁性MOF材料,不仅可简化催化剂的分离回收,而且通过控制壳层材料的厚度可以实现催化剂的高活性和高选择性.我们曾将磁核Fe3O4纳米粒子交替放入含有一种MOF材料前体的DMF溶液中,采用层层组装法制备了磁性Fe3O4@UiO-66-NH2纳米复合材料.经过十步组装后的材料的透射电镜(TEM)结果证实为核壳结构.但未出现明显的UiO-66-NH2的X射线衍射(XRD)特征峰,说明壳层材料UiO-66-NH2的结晶度较低;同时由于其孔结构的破坏或堵塞,在反应中出现明显失活.本文进一步改进自组装方法制备了核壳结构的磁性Fe3O4@UiO-66-NH2纳米复合材料,用XRD、傅里叶变换红外光谱(FT-IR)、TEM、扫描电镜(SEM)和氮气吸附等方法对材料的组成和结构进行了表征,并考察了其在Knoevenagel缩合反应中的催化性能.结果表明,所制材料是以Fe3O4为核,以UiO-66-NH2为壳的核-壳结构材料.经三次组装后出现了一系列UiO-66-NH2的XRD特征峰,说明采用新方法制备的复合材料中壳层材料UiO-66-NH2结晶度高,晶体结构规整.N2吸附-脱附结果表明,材料具有较高的比表面积和孔容.该复合材料在Knoevenagel缩合反应中表现出与纳米UiO-66-NH2相当或更好的催化活性和选择性,而且因壳层材料的孔道限阈效应而对底物表现出尺寸选择性.由于材料结晶度和晶体结构规整度的提高,催化剂稳定性更好,通过简单磁性分离即可分离和回收催化剂,循环使用4次而未出现明显失活.相对于本课题组之前报道的Fe3O4@CuBTC-NH2,Fe3O4@IRMOF-3和Fe3O4@UiO-66-NH2材料,本文所制的Fe3O4@UiO-66-NH2是一类结构更加稳定的高效固体碱催化剂.

关键词: 金属有机骨架材料 , UiO-66-NH2 , 四氧化三铁 , 多相催化剂 , Knoevenagel缩合反应 , 磁性分离

沉积-沉淀法和沉积-还原法制备Nb2O5负载的金纳米粒子及其催化CO氧化活性

Toru Murayama , Masatake Haruta

催化学报 doi:10.1016/S1872-2067(16)62508-1

采用不同的沉积法制备了氧化铌(Nb2O5)负载的金纳米粒子催化剂,即沉积-沉淀(DP)法、尿素辅助的DP法、沉积-还原(DR)法和一步法制备了1 wt%Au/Nb2O5催化剂.在众多类型Nb2O5(包括商业Nb2O5)中,采用水热法制备的层间型Nb2O5(Nb2O5(HT))最适合用作载体.结果表明,较大比表面积的Nb2O5(HT)使得金以纳米颗粒形式分散于其上.在优化的条件下,以DP和DR法沉积于Nb2O5(HT)上的金纳米粒子平均粒径为5 nm.采用DR法制备的Au/Nb2O5(HT)催化剂上CO转化率为50%时的温度为73oC.不沉积金的条件下,即使在250oC, Nb2O5(HT)对CO氧化反应也没有催化活性.因此,金的沉积对活性的促进作用非常明显.该简易Au/Nb2O5催化剂将金催化剂的类型扩展到酸性载体,这将增加新的应用.

关键词: 金纳米粒子 , 氧化铌 , 固体酸 , CO氧化 , 多相催化剂

氨基化磁性Fe3O4@Cu3(BTC)2材料的合成及其在Knoevenagel缩合中的催化性能

张艳梅 , 张静 , 田苗苗 , 储刚 , 权春善

催化学报 doi:10.1016/S1872-2067(15)61013-0

金属有机骨架材料具有大比表面积、高孔隙率、热稳定性好、规整且可调控的孔结构、易于功能化的骨架金属离子和有机配体等优点,是制备多相催化剂的重要材料之一.虽然减小金属有机骨架材料等多孔材料的粒径可以提高反应物的传质效率,从而提高其催化活性;但是,纳米尺寸催化剂的分离和回收困难.将磁性纳米粒子和金属有机骨架材料结合制备具有核-壳结构的磁性金属有机骨架材料是解决上述问题的有效方法.此类材料兼具磁性材料和金属有机骨架材料的双重优势,既可以磁性分离,又具有金属有机骨架材料的催化活性.而且,厚度可控的壳层材料表现出与纳米催化剂相当甚至更好的催化活性.我们采用逐层自组装方法制备了核-壳结构的磁性Fe3O4@Cu3(BTC)2复合材料,并对材料进行氨基化修饰,制备了基于金属有机骨架材料的磁性多相碱催化剂.采用粉末X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、透射电镜(TEM)、扫描电镜(SEM)、氮气吸附等方法对材料的组成和结构进行了表征,并考察了材料在Knoevenagel缩合反应中的催化性能.首先采用粉末XRD表征材料的晶体结构.在复合材料Fe3O4@Cu3(BTC)2的XRD谱中,同时出现了Fe3O4和Cu3(BTC)2的特征衍射峰.采用氨基配体修饰后,材料的XRD谱没有明显变化,说明修饰后的材料保持了Fe3O4@Cu3(BTC)2的晶体结构.透射电镜结果表明,包裹25次得到的磁性复合材料Fe3O4@Cu3(BTC)2是以Fe3O4为核心,以Cu3(BTC)2为壳的核-壳结构,壳层厚度大约为200 nm.氨基修饰后,材料的透射电镜图相对修饰前无明显变化.扫描电镜结果表明,合成的Fe3O4为球形结构,粒径为100-600 nm.采用Cu3(BTC)2进行包裹后,在Fe3O4表面生长了由Cu3(BTC)2纳米颗粒组成的壳层.采用氨基配体修饰后,材料的形貌无明显改变.进一步采用氮气吸附表征材料的孔结构并测定材料的比表面积和孔体积.结果表明,由于大比表面的Cu3(BTC)2的引入,复合材料Fe3O4@Cu3(BTC)2的比表面积增大为462 m2/g,孔体积为0.38 cm3/g.氨基修饰后,材料的比表面积和孔体积都有较大程度的降低,说明配体分子占据了壳层材料Cu3(BTC)2中的纳米孔道.采用苯甲醛和氰基乙酸乙酯的Knoevenagel缩合反应作为模型,考察了材料的催化活性.研究发现,Fe3O4对此反应几乎没有活性,Fe3O4@Cu3(BTC)2给出了中等的催化活性.在材料上引入氨基后,由于氨基和Cu3(BTC)2上的Lewis酸性位点的协同效应,在很大程度了提高了材料的催化活性.溶剂效应实验结果表明,反应溶剂对材料的活性和选择性具有较大影响,极性或质子性溶剂有利于反应的进行.多相催化剂的循环稳定性是其重要评价指标之一.热过滤实验结果表明,滤液中无催化活性,反应中的催化活性来源于固体材料,此催化反应为多相催化.随后考察了材料的循环稳定性.虽然氨基化Fe3O4@Cu3(BTC)2材料在溶剂DMSO中表现出最高的催化活性,但XRD和电镜表征结果表明,材料在DMSO中结构遭到破坏,因此循环过程中催化剂的活性损失严重.然后考察了氨基化材料在乙醇中的循环稳定性,发现材料在乙醇中表现出较好的循环稳定性.通过简单磁性分离进行催化剂的分离和回收,催化剂循环使用3次而没有明显的活力损失.而且,XRD和电镜表征结果显示,催化剂的结构在反应过程中没有遭到明显破坏.

关键词: 四氧化三铁 , 金属有机骨架材料 , 多相催化剂 , Knoevenagel缩合反应 , 磁性分离

多相 MnOx氮掺杂碳材料催化氮杂环侧链 Csp3-H的氧化反应

任兰会 , 王连月 , 吕迎 , 李国松 , 高爽

催化学报 doi:10.1016/S1872-2067(16)62503-2

sp3杂化的碳氢键氧化成酮是有机合成中一个重要方法.相应的酮产物被广泛应用在医药和天然产物合成中.目前已经开发出多种衍生于含 N杂环酮的药物化合物和具有生物活性的天然产物,例如阿普米定、苯吡胺、氯苯吡胺、曲普利啶、多西拉敏等.传统的含 N杂环侧链氧化生成酮的方法使用化学计量的强氧化剂(如高锰酸钾),不可避免地产生众多的副产物.近年来,均相的过渡金属催化剂被广泛应用于含 N杂环侧链氧化生成酮的反应中.但是 N杂环和过渡金属配位导致催化剂失活,选择性降低.金属的残留也使后处理过程变得繁琐.均相催化剂还存在难以回收利用的缺点.使用多相催化剂可以解决上述问题,因而具有重大的研究意义.目前为止,还很少有文献报道多相催化剂催化含 N杂环侧链氧化生成酮的方法.本文使用硝酸锰和菲啰啉的络合物在氮气氛围中高温焙烧,制备了一系列新型 MnOx-N@C材料.首次应用于 C–H氧化成酮的领域中.以2-苄基吡啶为模板底物,使用叔丁基过氧化氢为氧化剂,我们研究了 MnOx-N@C材料的催化活性.研究发现,在600oC焙烧得到的 MnOx-N@C材料具有最高的催化活性.实验得到最佳的反应条件:0.5 mmol底物,3当量的叔丁基过氧化氢,1 mg MnOx-N@C (600oC)材料. ICP结果表明,1 mg MnOx-N@C (600oC)材料中含有的锰相对于0.5 mmol底物的摩尔分数为0.79 mol%,说明该材料具有很高的催化活性.我们进一步研究了 MnOx-N@C (600oC)材料适用的底物范围,发现它可以催化2,3-环戊烯并吡啶类化合物、苄基吡啶类化合物发生氧化反应生成相应的酮;当反应底物中存在其他可以被氧化的碳氢键时,该材料表现出很高的选择性,可见其具有广泛的底物范围和优异的选择性.对于克级以上规模的底物量, MnOx-N@C仍能表现出很高的催化活性,表明其在有机合成中具有很好的实用性;连续使用6次后,该催化剂依然表现出很高的催化活性.表征结果表明, MnOx-N@C (600oC)材料中 MnOx粒子大小为1.71–6.56 nm;样品中存在 C–N, C=N和吡咯型的 N; Mn的化学态有+2,+3和+4.

关键词: 氧化 , 多相催化剂 , , 碳氢键 ,

钯纳米颗粒负载在聚苯胺材料上制得催化Suzuki-Miyaura偶联反应的高效催化剂

樊海鹏 , 祁正亮 , 随德君 , 毛飞 , 陈日志 , 黄军

催化学报 doi:10.1016/S1872-2067(17)62772-4

在最近的几十年里,金属钯催化的Suzuki-Miyaura偶联反应已经得到了越来越多的关注,被广泛应用于药物、天然产物以及新材料的合成.与此同时均相催化剂发展迅速,高效的配体和大量的设计被用于Suzuki-Miyaura偶联反应中,但是钯催化剂的配体通常很昂贵和难以合成,因此钯催化剂系统的回收是非常有价值的,不仅是经济上的原因,同时也避免了产品的污染,所以发展非均相催化剂是必要的.近年来,研究学者们致力于设计非均相的钯催化剂,如将钯纳米颗粒负载到金属有机骨架、介孔分子筛以及活性炭等多种材料上得到的非均相钯催化剂并应用于Suzuki-Miyaura偶联反应中.我们主要介绍了钯纳米颗粒被负载在含磷配体的交联的聚苯胺材料上制得负载的钯催化剂,首先通过钯催化的三(4-碘苯基)胺与金刚烷基膦的C–P偶联,再由钯催化三(4-碘苯基)胺与对苯二胺的C–N偶联,进而得到钯纳米颗粒负载在含金刚烷基膦的聚苯胺材料上的催化剂Pd@PAN-Ad-0.5(钯含量为0.58 wt%),同时我们对催化剂进行了一些表征,如TEM,SEM,XRD,EDX,XPS,FT-IR,ICP等.通过TEM分析,我们发现钯纳米颗粒在聚合物表面分布均匀,并且金属钯的平均粒径为2–3 nm;EDX检测显示催化剂含有C,N,P,Pd,I元素,说明钯负载到含金刚烷基膦的聚苯胺材料上的催化剂Pd@PAN-Ad-0.5已经形成,并被用于Suzuki-Miyaura偶联反应.我们对反应体系中的各种影响因素进行了优化,包括溶剂、碱、反应时间、催化剂加入量以及不同的催化剂的优化,最终确定了最佳反应条件;对于带有不同取代基(如腈基、甲氧基、醛基、酮基以及硝基)的氯代芳烃和溴代芳烃与苯硼酸的Suzuki-Miyaura反应,以较少的催化剂使用量(0.075 mol%Pd)就能获得较高的相应的联苯产物收率.此外,催化剂Pd@PAN-Ad-0.5在偶联反应中具有较高的反应活性的同时,还具有较好的回收使用能力(至少能够回收使用5次),循环使用4次以后还具有较高的催化活性.为了探索催化剂Pd@PAN-Ad-0.5在工业上的应用,由于4'-氯-2-硝基-1,1'-联苯是合成啶酰菌胺药物的重要中间体,因此我们使用催化剂Pd@PAN-Ad-0.5催化2-硝基氯苯与4-氯苯硼酸的偶联反应,目标产物4'-氯-2-硝基-1,1'-联苯的收率高达96%.我们相信这类催化剂应用于实验室或工业上合成联苯化学品具有较大的潜力.

关键词: , 多相催化剂 , 聚苯胺 , Suzuki-Miyaura偶联反应 , 联苯

  • 首页
  • 上一页
  • 1
  • 2
  • 下一页
  • 末页
  • 共2页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词