{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"测量了具有双程记忆效应的Cu-298Zn-4Al(质量分数)合金的LT曲线,用透射电镜观察了该合金在不同时效温度下的微观组织,计算并分析了该双程记忆合金弹簧的实用参数.以此为依据,设计研制了一种能够在油田使用的定温控制阀门.本阀门结构简单,动作可靠,适合控温精度要求不高且工作环境较恶劣的条件下使用,具有广泛的应用前景.","authors":[{"authorName":"余五星","id":"9bc8531f-109c-4bab-8527-3e9bdd299853","originalAuthorName":"余五星"},{"authorName":"林军","id":"23e1b436-974d-4b4d-8f88-09fc553e5479","originalAuthorName":"林军"},{"authorName":"王纯武","id":"cb1a21a6-2d9d-4f9a-afa2-8a90c2124e54","originalAuthorName":"王纯武"},{"authorName":"薛海晖","id":"743f1456-0bec-479a-9b91-e3453fd7d3c6","originalAuthorName":"薛海晖"},{"authorName":"林仁荣","id":"bfa35888-623e-4c6b-8114-96714f36934e","originalAuthorName":"林仁荣"},{"authorName":"耿殿奇","id":"9bd3750f-76b2-47e8-a46b-416b858bad1e","originalAuthorName":"耿殿奇"},{"authorName":"魏海荣","id":"0c0954a5-8c52-49d5-82a9-e9efb1f950ea","originalAuthorName":"魏海荣"}],"doi":"","fpage":"393","id":"9051d2e6-7212-4cd0-8da2-62812fbe40f6","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3cea31e2-26ca-4467-b2eb-2af4c2a272b7","keyword":"阀","originalKeyword":"阀"},{"id":"e481d335-4cde-4443-831f-9acc537d76c9","keyword":"形状记忆合金","originalKeyword":"形状记忆合金"},{"id":"e77e8777-67d5-4b95-b65b-e63d42566514","keyword":"热机械稳定性","originalKeyword":"热机械稳定性"}],"language":"zh","publisherId":"xyjsclygc200205019","title":"在油田使用的一种记忆合金温控阀","volume":"31","year":"2002"},{"abstractinfo":"","authors":[{"authorName":"曲恒磊","id":"1e9cddde-b17c-48bc-b02c-d4ec3986f59f","originalAuthorName":"曲恒磊"},{"authorName":"周廉","id":"566ff676-1470-4073-9b23-cf52087f2cd9","originalAuthorName":"周廉"},{"authorName":"魏海荣","id":"0d2f1dea-7e16-41ac-9b7d-84ce62d36e13","originalAuthorName":"魏海荣"},{"authorName":"王克光","id":"460049dd-6af1-47e5-b21b-9afa6580f457","originalAuthorName":"王克光"},{"authorName":"赵永庆","id":"58742c1c-f7ff-460d-93b2-8541746b1536","originalAuthorName":"赵永庆"}],"doi":"10.3969/j.issn.1009-9964.2000.03.015","fpage":"37","id":"2d3f63de-657d-4e2b-bb5f-48aba4a32d5d","issue":"3","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"fc91ea9f-bf46-4e26-9f77-33be693557fb","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"tgyjz200003015","title":"TiAl基合金高温氧化动力学分析","volume":"","year":"2000"},{"abstractinfo":"热压Ag-Cu复合材料的界面层两侧各为含Ag的Cu基固溶体和含Cu的Ag基固溶体。界面两侧的结合是固溶体间的金属结合,界面强度比纯Ag的强度略高,而比纯Cu的强度低。 本文用X射线方法测定界面层晶格参数,用拉仲方法测定界面强度,并用Seah的准化学方法计算界面强度,与实验结果一致。研究结果表明,采用热压工艺制备Ag-Cu复合材料可以实现Ag-Cu的牢固结合。","authors":[{"authorName":"王志兴","id":"e31b6d33-ef30-45be-914d-87c90777a880","originalAuthorName":"王志兴"},{"authorName":"赖祖涵","id":"d8355902-e5ec-436e-bfe3-ae20ffef9fd6","originalAuthorName":"赖祖涵"},{"authorName":"刘国禄","id":"b1133fd2-2ef7-4e69-a997-2ded909e1bab","originalAuthorName":"刘国禄"},{"authorName":"魏海荣","id":"73990bb7-83f6-49a6-b0d0-7ec0ce7095f3","originalAuthorName":"魏海荣"}],"categoryName":"|","doi":"","fpage":"46","id":"6ae1eb74-0590-45db-8170-294c6d6ed240","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1983_5_16","title":"Ag-Cu复合材料界面结构和强度的研究","volume":"19","year":"1983"},{"abstractinfo":"通过对TiC颗粒增强钛基复合材料断裂研究表明:TiC颗粒的缺陷比例对复合材料的断裂裂纹扩展速率有较大影响.形状规则且无缺陷的粒子在受力的初期不易破断,可较大提高裂纹扩展所需能量.反之,易破碎的粒子则增加了裂纹尖端的扩展应力,提高了裂纹扩展速率.适当的热处理可提高裂纹扩展所需塑性功,从而在一定范围内改善复合材料塑性.","authors":[{"authorName":"毛小南","id":"d286e103-f7b2-4991-a2b6-d821366b4cf6","originalAuthorName":"毛小南"},{"authorName":"周廉","id":"3e303941-59da-4604-b6ae-8ecc2b450bb0","originalAuthorName":"周廉"},{"authorName":"曾泉浦","id":"50881373-5a8e-47f7-94b5-10b3cced6fd6","originalAuthorName":"曾泉浦"},{"authorName":"魏海荣","id":"d05d54cf-d906-4300-bd0f-16f974de8f5b","originalAuthorName":"魏海荣"}],"doi":"","fpage":"217","id":"934f1089-a016-4514-910d-f5f86cf39a4f","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"2c6c1e55-ef88-4a3c-940f-3b34e35eb4a2","keyword":"TiC颗粒","originalKeyword":"TiC颗粒"},{"id":"ee96be25-3593-4467-843a-4eb4e1c6d458","keyword":"扩展速率","originalKeyword":"扩展速率"},{"id":"f1fbd433-9156-42a0-9d00-f01a139dc504","keyword":"塑性功","originalKeyword":"塑性功"},{"id":"59408f5b-2ac4-4b0e-b5b9-d3f3efb2b2c8","keyword":"应力","originalKeyword":"应力"}],"language":"zh","publisherId":"xyjsclygc200004001","title":"TiC颗粒增强钛基复合材料的形变断裂","volume":"29","year":"2000"},{"abstractinfo":"利用SEM,TEM对TiC粒子增强的钛基复合材料的强化方式进行研究,得出:当反应界面厚度控制在0.5μm~2μm时,界面将起到良好的传递载荷的作用,使粒子承载.当粒子的粒度较小(dP<1μm),Orowan强化机制将参与材料强化,而当粒子较大时(dP>1μm),阻碍位错滑移.由于两相之间的不均匀变形,在界面形成较高的应力集中,阻碍形变,并可产生形变位错源,使基体中位错增殖,形成位错胞,强化基体.当扩展裂纹遇到TiC粒子,使扩展路径发生偏转,增加裂纹扩展能量,提高了材料的强度.","authors":[{"authorName":"毛小南","id":"3b6d34cd-0ca7-447b-9fdd-3ce66a89115e","originalAuthorName":"毛小南"},{"authorName":"周廉","id":"8151814d-a86f-4003-8c70-d54c7ec92517","originalAuthorName":"周廉"},{"authorName":"曾泉浦","id":"7dc6f14e-3411-4bca-9592-1539e751f869","originalAuthorName":"曾泉浦"},{"authorName":"魏海荣","id":"52b98c5d-d2ee-408b-842d-83e6d76389d8","originalAuthorName":"魏海荣"}],"doi":"","fpage":"378","id":"967e7e9d-e50b-4e97-b452-97b413fde292","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"40acf2dc-f1a4-4b92-9af2-ee809f5b8741","keyword":"强化","originalKeyword":"强化"},{"id":"a29f4a74-8f7b-4369-a0de-a86a194b456e","keyword":"位错","originalKeyword":"位错"},{"id":"66fc58ef-3a4d-4b58-b5d2-81a5dc99331a","keyword":"界面","originalKeyword":"界面"},{"id":"79cf630c-02c3-4522-85c7-25fe1f54068b","keyword":"不均匀变形","originalKeyword":"不均匀变形"}],"language":"zh","publisherId":"xyjsclygc200006005","title":"TiCp颗粒增强钛基复合材料的强化机理研究","volume":"29","year":"2000"},{"abstractinfo":"用年腐蚀深度公式计算了5种TiAl基合金在700 ℃~1 000 ℃高温条件下设计寿命为1年或半年的腐蚀程度,对其抗氧化性进行了评价,并与其它耐热材料作了比较。结果显示,二元TiAl基合金的抗氧化性强于三元TiAl-Cr合金,前者在800 ℃左右,后者低于800 ℃;二元TiAl基合金中Ti-50Al及Ti-52Al的抗氧化性优于Ti-48Al合金,三元TiAl-Cr合金中Ti-48Al-4Cr的抗氧化性优于Ti-48Al-1Cr合金。5种TiAl基合金的抗氧化性均不如Ni基合金及Ni-Al系化合物,但比Ti3Al及常规钛合金好。","authors":[{"authorName":"曲恒磊","id":"2f145a04-e965-4e24-85f9-0d493b14806f","originalAuthorName":"曲恒磊"},{"authorName":"周廉","id":"e0321850-a8c0-4a41-8a40-6a61707ba83b","originalAuthorName":"周廉"},{"authorName":"魏海荣","id":"f5008aee-05fe-4ba2-b5bb-b5c78d1de93f","originalAuthorName":"魏海荣"},{"authorName":"赵永庆","id":"9505933b-44b5-4e2d-9f97-47addfd617a8","originalAuthorName":"赵永庆"}],"doi":"10.3969/j.issn.1009-9964.2001.02.001","fpage":"1","id":"97355e5d-b121-41f9-b92e-1a6f80aebbd8","issue":"2","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"decabdeb-79ea-4bb8-bf4b-050482d3bc15","keyword":"TiAl基合金","originalKeyword":"TiAl基合金"},{"id":"10390032-e7ec-42fb-b399-8793acd37cf5","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"1fb9c12c-01f1-4c30-ac38-a8b17d1199ef","keyword":"抗氧化温度","originalKeyword":"抗氧化温度"}],"language":"zh","publisherId":"tgyjz200102001","title":"部分TiAl基合金的抗氧化性评价","volume":"","year":"2001"},{"abstractinfo":"","authors":[{"authorName":"曲恒磊","id":"331682a6-cad8-4c76-bff4-1e1573974cfc","originalAuthorName":"曲恒磊"},{"authorName":"周廉","id":"477907a1-bb25-4d68-bbba-4c969fd1bbb6","originalAuthorName":"周廉"},{"authorName":"魏海荣","id":"3d1ea21c-98f0-4f4d-94e7-c909900260f2","originalAuthorName":"魏海荣"},{"authorName":"赵永庆","id":"17d625b8-e19d-4206-8f5d-90a42abe873d","originalAuthorName":"赵永庆"}],"doi":"10.3969/j.issn.0258-7076.2001.02.001","fpage":"69","id":"b9da18df-e907-4da3-8ae1-fcb21d1ff903","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"3c9a055e-1b5a-4057-bad5-f563967638be","keyword":"","originalKeyword":""}],"language":"zh","publisherId":"xyjs200102001","title":"An Overview of Mineral Processing in China","volume":"20","year":"2001"},{"abstractinfo":"TiAl吸氢量小,抗高温吸氢性优异.与镍基合金相比,TiAl抗燃气热腐蚀性及抗熔盐热腐蚀性均较好.TiAl的抗氧化性有限.未经表面改性处理时在800℃以上尚不足以使用.合金化元素、显微组织、机械载荷、表面状态等均可影响TiAl的高温氧化行为.","authors":[{"authorName":"曲恒磊","id":"9345fa50-9ef0-484f-bcc6-2a792e87657d","originalAuthorName":"曲恒磊"},{"authorName":"周廉","id":"354419a7-d099-41e1-a18b-59f0f5e0b517","originalAuthorName":"周廉"},{"authorName":"魏海荣","id":"c2e2b417-cccc-4f49-9004-a97b35c8696b","originalAuthorName":"魏海荣"},{"authorName":"赵永庆","id":"783cafbc-7684-43c6-942a-5ef020cfc0fa","originalAuthorName":"赵永庆"}],"doi":"","fpage":"32","id":"de99da33-4d1f-48b2-a387-98ddf71d3ab6","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8abafe5d-29df-408c-b41e-39d758f28361","keyword":"TiAl","originalKeyword":"TiAl"},{"id":"1120a135-7707-4633-a607-06e4f39000be","keyword":"高温氧化","originalKeyword":"高温氧化"},{"id":"64e67948-bdf2-4402-a4b4-3f5703522d49","keyword":"热腐蚀","originalKeyword":"热腐蚀"}],"language":"zh","publisherId":"cldb200010012","title":"TiAl的抗环境性研究","volume":"14","year":"2000"},{"abstractinfo":"将5种铸态TiAl置于700℃~1 000℃静止空气中断续氧化100 h.采用XRD和SEM/EDS分析技术,观察分析了TiAl氧化后的表面形貌、相组成及分布状况.结果表明:氧化产物主要为金红石型R-TiO2和刚玉型α-Al2O3;低温、短时氧化时,氧化产物呈混合形式存在;高温、长时氧化时,在混合氧化物之外易形成纯R-TiO2晶体层.","authors":[{"authorName":"曲恒磊","id":"5ac583b9-7a92-4e9f-aa42-2c4fe5e74056","originalAuthorName":"曲恒磊"},{"authorName":"周廉","id":"b34e7a77-9a33-4860-8c92-7b8739697efe","originalAuthorName":"周廉"},{"authorName":"魏海荣","id":"ca43fce4-0915-453f-94d9-43869f57c4d2","originalAuthorName":"魏海荣"}],"doi":"","fpage":"90","id":"0d6de12d-a2a8-4583-8d7e-2462e532ae5d","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"6f538385-b39e-403d-a5f8-3916d88ba16a","keyword":"钛铝","originalKeyword":"钛铝"},{"id":"8940bab5-8775-4e60-aeb4-09e46a841513","keyword":"高温氧化","originalKeyword":"高温氧化"},{"id":"264855e3-b36b-4460-8a97-4b7597cd8d2b","keyword":"表面分析","originalKeyword":"表面分析"}],"language":"zh","publisherId":"xyjsclygc200002005","title":"钛铝高温氧化表面分析","volume":"29","year":"2000"},{"abstractinfo":"用热重分析(TGA)法研究了Ti-50±2Al(a t%)在各种条件下100h内的高温氧化行为.结果显示:TiAl基合金在总体上随Al含量的增大、其氧化增重(ΔM)有减小的趋势,但中间成分Ti-50Al合金的ΔM在不同条件下(尤其是氧化环境较为苛刻时)会有所波动.Ti-48Al的抗氧化性不如Ti-52Al的原因在于后者氧化表层中Al2O3含量增加,而Al2O3中离子扩散系数小,阻碍了反应离子的互扩散,从而减缓了反应速度.TiAl的氧化动力学规律对Al波动不甚敏感,但对氧化条件敏感.表面氧化物基本组成为(TiO2+Al2O3).","authors":[{"authorName":"曲恒磊","id":"f1021c70-fa7d-4424-8e3c-aa82208972c7","originalAuthorName":"曲恒磊"},{"authorName":"周廉","id":"e5c9d008-1112-4680-bbd5-6782148a5a2b","originalAuthorName":"周廉"},{"authorName":"魏海荣","id":"f0232828-00f3-4bc3-890a-da86dc8baed7","originalAuthorName":"魏海荣"}],"doi":"10.3969/j.issn.1673-2812.2000.03.001","fpage":"2","id":"66cbdfee-2ac8-4a5f-a11e-95eb394f2899","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"bb304f75-9fcb-4d0f-b2c4-3efdb8faa77a","keyword":"TiAl","originalKeyword":"TiAl"},{"id":"6bcf656e-7669-4d9e-9dc4-ab1ab936961a","keyword":"氧化增重","originalKeyword":"氧化增重"},{"id":"287f0fed-5174-47c0-a807-9bef5f107b76","keyword":"扩散","originalKeyword":"扩散"}],"language":"zh","publisherId":"clkxygc200003001","title":"元素Al的波动对TiAl高温氧化行为的影响","volume":"18","year":"2000"}],"totalpage":47,"totalrecord":467}