{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"本文研究了α铁-铁氧体粘结混合磁体的复合效应。结果表明了混合磁体的剩磁Br有增强现象,这种增强现象与晶粒尺寸有关。","authors":[{"authorName":"刘兴阶","id":"a2e41719-88ba-4f49-a24a-6706230a4143","originalAuthorName":"刘兴阶"},{"authorName":"李震","id":"421243be-cf46-4ffb-a5e9-e3501506575e","originalAuthorName":"李震"},{"authorName":"胡用时","id":"24a56584-28c2-4cee-a454-60e0cce63e95","originalAuthorName":"胡用时"},{"authorName":"李佐宜","id":"875698df-7161-4b72-bf74-178689fa8f2b","originalAuthorName":"李佐宜"}],"doi":"10.3969/j.issn.1005-8192.2001.01.007","fpage":"33","id":"fed79533-a00f-458c-8c6d-802f0a369e82","issue":"1","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"f0510b54-ba36-4680-99c5-4a846391a416","keyword":"粘结混合磁体","originalKeyword":"粘结混合磁体"},{"id":"3acce3c7-be4b-44e0-a27e-a672cd9ffd39","keyword":"α铁","originalKeyword":"α铁"},{"id":"80e2166d-73de-4d22-9a08-0129fadaecef","keyword":"铁氧体","originalKeyword":"铁氧体"},{"id":"0331cfba-fd1b-43e5-ac51-cd7945bbd4c3","keyword":"复合效应","originalKeyword":"复合效应"}],"language":"zh","publisherId":"jsgncl200101007","title":"α铁-铁氧体材料粘结混合磁体","volume":"8","year":"2001"},{"abstractinfo":"研究了 TiO2表面染料的吸附状态不同时,染料敏化太阳能电池(DSC)的光电转换性能,并采用电化学交流阻抗技术(EIS)考察了不同染料吸附状态下DSC中的电子界面复合效应。结果表明,在非饱和吸附染料状态下,通过调整 TiO2薄膜表面染料分子吸附量,可以降低界面电荷复合效应,使电子在 TiO2薄膜的传输过程中寿命增加,从而提高DSC的填充因子。","authors":[{"authorName":"汪禹汛","id":"9cc12fce-af7f-48e1-b5d6-8ba9c77f7814","originalAuthorName":"汪禹汛"},{"authorName":"王智","id":"66ba8933-4d49-4550-b343-0bf2d9bb0eb7","originalAuthorName":"王智"},{"authorName":"唐笑","id":"33e463ad-93be-49c4-b66b-f77ad55a9cf5","originalAuthorName":"唐笑"},{"authorName":"刘芳芳","id":"8574a762-df3c-4708-b7db-5ca0b7e3f0c8","originalAuthorName":"刘芳芳"}],"doi":"10.3969/j.issn.1001-9731.2013.19.014","fpage":"2804","id":"d0e7e76c-c5eb-40dc-8509-a8b08c382823","issue":"19","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"115e8db5-2585-4b9f-9bfa-688c1cd7835a","keyword":"染料","originalKeyword":"染料"},{"id":"b089386a-2f0f-4876-b61b-371eec5c5df0","keyword":"吸附状态","originalKeyword":"吸附状态"},{"id":"539e7ab6-ff65-4a5a-9d4f-c77b903518a1","keyword":"复合效应","originalKeyword":"复合效应"},{"id":"ab3501b9-5263-444b-95a5-e4308eeff2b6","keyword":"电子寿命","originalKeyword":"电子寿命"},{"id":"60e7cdbe-78c0-48bd-9295-786b01b3688e","keyword":"太阳能电池","originalKeyword":"太阳能电池"}],"language":"zh","publisherId":"gncl201319014","title":"不同染料吸附状态下染料敏化太阳能电池电化学阻抗谱研究","volume":"","year":"2013"},{"abstractinfo":"复合型高效阻燃剂是当前阻燃技术研究的重要方向之一.根据木材阻燃的炭量增加理论,利用水溶性试验、灼烧成炭试验和热分析方法研究了聚磷酸铵的合成条件、聚磷酸铵-硼酸复合阻燃剂的复合阻燃效应.聚磷酸铵的最佳合成条件是:磷酸:尿素摩尔比为1:1.8,预聚合温度为(124±2)℃,预聚合反应时间为25min左右,聚合固化温度230~240℃左右,聚合固化时间为140min左右.在最佳条件下合成的聚磷酸铵的聚合度为23.3,溶解度为0.67g/100mL水,阻燃处理杨木粉在400℃灼烧30min的成炭率为38.9%,是同一条件下未处理杨木粉灼烧成炭率的2.15倍.聚磷酸铵和硼酸以4:1复配所制得的聚磷酸铵-硼酸复合阻燃剂,对木粉的成炭率为40.5%,相对复合阻燃效应为43.2%.200~300℃是木粉热解燃烧的主要阶段,也是阻燃剂发挥阻燃作用的主要阶段.聚磷酸铵-硼酸复合阻燃剂在高温下不仅能催化木材产生更多的木炭,而且能使木炭结构紧密、不易燃烧.","authors":[{"authorName":"胡云楚","id":"a468ef48-a092-4833-8735-b735f6b463d3","originalAuthorName":"胡云楚"},{"authorName":"吴志平","id":"f0cd34c2-a427-4890-be37-bebe710a7dcd","originalAuthorName":"吴志平"},{"authorName":"孙汉洲","id":"b7fcc0ea-f57d-4a50-8bcc-d6a5fcdccee2","originalAuthorName":"孙汉洲"},{"authorName":"周莹","id":"15b91c66-dbf4-4463-b09c-31fc38a8e432","originalAuthorName":"周莹"},{"authorName":"刘元","id":"dd3ef42d-2363-471a-a10b-60b17d3feee2","originalAuthorName":"刘元"}],"doi":"","fpage":"424","id":"e2452a68-fc36-4ed8-8f94-1aaf7fb22907","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"cb4f3cb4-480a-4733-a886-74e44b3fd587","keyword":"聚磷酸铵","originalKeyword":"聚磷酸铵"},{"id":"030b7792-858a-4fd3-9141-f5a8c9a7a374","keyword":"硼酸","originalKeyword":"硼酸"},{"id":"493cdaae-dd26-433a-9c21-320122918412","keyword":"灼烧成炭试验","originalKeyword":"灼烧成炭试验"},{"id":"955855de-3858-49b7-86f7-6ea8baa5bc39","keyword":"阻燃性能","originalKeyword":"阻燃性能"},{"id":"cedd89fd-a0ee-43ec-91d6-de8acbb01952","keyword":"复合效应","originalKeyword":"复合效应"}],"language":"zh","publisherId":"gncl200603026","title":"聚磷酸铵的合成及其阻燃性能研究","volume":"37","year":"2006"},{"abstractinfo":"采用12.7 mm穿甲枪弹,进行陶瓷/铝合金复合装甲在不同倾角条件下抗弹侵彻试验,研究倾角效应对抗弹性能的影响.研究结果表明:陶瓷复合装甲的倾角效应为正效应,即随着倾角增大,陶瓷的抗弹性能提高;弹靶作用时陶瓷面板中倒陶瓷锥的形成是陶瓷复合装甲抗弹性能提高的主要原因.","authors":[{"authorName":"胡丽萍","id":"352ced86-491a-41f9-af2d-7b98e7c00ef9","originalAuthorName":"胡丽萍"},{"authorName":"钟涛","id":"c5deb07a-e416-4a79-8b41-819cc5d118f1","originalAuthorName":"钟涛"},{"authorName":"王智慧","id":"ed54b3e5-4386-45d2-bc9c-827e31339e5f","originalAuthorName":"王智慧"},{"authorName":"田时雨","id":"cd7cf5a3-8e50-4d8e-8a4d-5a08ab7a6874","originalAuthorName":"田时雨"},{"authorName":"李述涛","id":"ffc3116b-7541-441f-a8ea-63647c1c9a07","originalAuthorName":"李述涛"}],"doi":"10.3969/j.issn.1004-244X.2009.02.025","fpage":"87","id":"81f9c290-e663-4344-b6f6-6c37f231065b","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"48591738-ced7-4758-8398-c911b921d08d","keyword":"倾角效应","originalKeyword":"倾角效应"},{"id":"270f185b-1393-4c8b-8525-c8b93a975ed4","keyword":"陶瓷/铝合金","originalKeyword":"陶瓷/铝合金"},{"id":"ac7e3065-a04c-44ca-9204-e1cf0f205cd0","keyword":"复合装甲","originalKeyword":"复合装甲"},{"id":"53e856b7-7721-4130-baa7-15f723fdca47","keyword":"倒陶瓷锥","originalKeyword":"倒陶瓷锥"}],"language":"zh","publisherId":"bqclkxygc200902025","title":"陶瓷/铝合金复合装甲倾角效应研究","volume":"32","year":"2009"},{"abstractinfo":"通过化学镀方法在直径为90μm的铜丝上制备了NiCoP/Cu复合结构丝,研究了驱动电流幅值和频率对复合丝的巨磁阻抗效应和磁场灵敏度的影响.研究发现驱动电流幅值增加时能显著增强复合丝巨磁阻抗效应和增加磁场灵敏度.电流大小和频率会改变GMI曲线峰值对应磁场Hp.结果可以用磁化过程和非线性效应来解释.","authors":[{"authorName":"张庚华","id":"c5b84e97-5da8-4c96-88a9-3ba4e6f65e92","originalAuthorName":"张庚华"},{"authorName":"李欣","id":"8a7c33ce-8300-45b3-8bd6-91c673616909","originalAuthorName":"李欣"},{"authorName":"王清江","id":"2c6bcfa2-e000-4ba3-8c7e-47a6c71a3bb2","originalAuthorName":"王清江"},{"authorName":"袁望治","id":"5509d967-b493-4e0d-8404-5d5c51efa022","originalAuthorName":"袁望治"},{"authorName":"杨燮龙","id":"6dd80952-2e33-4a40-9dbb-1250cfe23bf6","originalAuthorName":"杨燮龙"},{"authorName":"赵振杰","id":"5d4e94aa-977d-4ed9-ac9e-b9e4ef4df52e","originalAuthorName":"赵振杰"}],"doi":"","fpage":"1283","id":"d5337ab2-d68f-4a7a-b7df-fb55254b7f4e","issue":"8","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"1a4fcf6c-04f9-45a6-ace6-4cd00e1d5dda","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"6f6c8f41-a9db-4c00-a31e-19fcbf44da6c","keyword":"复合结构丝","originalKeyword":"复合结构丝"},{"id":"568ea479-8eb5-4cf2-9189-8d49bdfa9ef3","keyword":"巨磁阻抗效应","originalKeyword":"巨磁阻抗效应"},{"id":"3fd37334-b889-4b58-8441-c200d6e2099e","keyword":"驱动电流","originalKeyword":"驱动电流"}],"language":"zh","publisherId":"gncl200808014","title":"驱动电流对复合结构丝GMI效应的影响","volume":"39","year":"2008"},{"abstractinfo":"本文采用能量变分原理,研究了复合材料薄壁结构剪力滞效应,同时考虑两个方向的剪切变形影响,计算剪力滞系数.","authors":[{"authorName":"屠义强","id":"3b6b36ed-d930-4544-a82a-237bc40f53b0","originalAuthorName":"屠义强"},{"authorName":"范华林","id":"8f76493d-a597-409d-93a1-81caaea6e6bb","originalAuthorName":"范华林"},{"authorName":"任俊宏","id":"92acbefb-2aa9-4eca-89a4-ff241d41194a","originalAuthorName":"任俊宏"},{"authorName":"刘小斌","id":"4d54a376-d7b6-4ea7-a915-4e87cbd8fe21","originalAuthorName":"刘小斌"}],"doi":"10.3969/j.issn.1003-0999.2001.05.003","fpage":"8","id":"4017e735-750b-424d-9c0b-fca0c28659de","issue":"5","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"7938ea0a-2155-4a55-9120-03f1ba60e335","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"29c8fbd2-8ed8-4f9e-a7b3-114e360c8a25","keyword":"薄壁结构","originalKeyword":"薄壁结构"},{"id":"a44ba90f-3337-49f2-b7f7-23726d636130","keyword":"剪力滞效应","originalKeyword":"剪力滞效应"}],"language":"zh","publisherId":"blgfhcl200105003","title":"复合材料薄壁结构剪力滞效应研究","volume":"","year":"2001"},{"abstractinfo":"设计了Terfenol-D/PZT/Terfenol-D(T/P/T)、Terfenol-D/PZT(T/P)、Terfenol-D/PZT/Glass(T/P/G)3种不同结构的层状磁电复合材料,研究了夹持效应对其振动模式的调控作用及其磁电效应的影响.结果表明,对称结构只有长度振动模式,而非对称结构同时具有弯曲振动和长度振动模式;夹持效应使两种共振模式的共振频率均向高频方向移动;夹持效应提高了低共振频率下的一阶弯曲振动强度;在准静态频率下,T/P/G结构的磁电耦合系数有最大值0.89 V/(cm·Oe).在低频下,弯曲振动模式占主导地位,同时夹持效应显著抑制了长度振动模式,该两种振动模式引起的磁电效应相反,从而使得总磁电耦合系数得到提高,所以夹持效应提高了器件在低频应用的可能性.","authors":[{"authorName":"杨超","id":"49b3ed77-2fa7-477b-802e-c0f9655d2aa0","originalAuthorName":"杨超"},{"authorName":"章天金","id":"66008daa-3559-4069-851d-42d2af7d782e","originalAuthorName":"章天金"},{"authorName":"梁坤","id":"5f9e4342-c044-4285-b7ed-2a172913f5c4","originalAuthorName":"梁坤"}],"doi":"10.3969/j.issn.1001-9731.2017.02.030","fpage":"2162","id":"284ae6c8-9c99-4481-9979-a146b413c277","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"09718caf-99ce-4aa4-aacc-88cc13bb4ed0","keyword":"振动模式","originalKeyword":"振动模式"},{"id":"d48e89df-9ee6-46ec-bbcc-ab8827f3787c","keyword":"共振频率","originalKeyword":"共振频率"},{"id":"7374ab4b-e8e4-4c89-a4d2-5e9a2c126f39","keyword":"夹持效应","originalKeyword":"夹持效应"},{"id":"88410ad1-f961-4741-9568-4dd9a7e87e0e","keyword":"磁电效应","originalKeyword":"磁电效应"}],"language":"zh","publisherId":"gncl201702030","title":"夹持效应对层状磁电复合材料磁电效应的影响","volume":"48","year":"2017"},{"abstractinfo":"研究了高密度聚乙烯/碳黑-多壁碳纳米管复合材料的正温度系数效应(PTC).结果发现,HDPE/CB-MWNTs复合材料中MWNTs的含量为1%.(质量分数,下同)时复合材料的PTC强度达8.3,室温电阻率仅为1.2Ω·m;而当MWNTs的含量为3%.时复合材料的PTC强度迅速减小到小于3,室温电阻率则变化不大.SEM研究表明导电填料CB或者MWNTs在复合材料中分布均匀.对HDPE/CB-MWNTs复合材料的PTC效应随MWNTs含量的变化原因进行了探讨.","authors":[{"authorName":"易回阳","id":"a3cc5793-98ab-4de0-b6e0-a4a46fdeb425","originalAuthorName":"易回阳"},{"authorName":"陈芳","id":"5c08ce84-cc2c-4e6e-ae26-89ae5653d781","originalAuthorName":"陈芳"},{"authorName":"罗四清","id":"708d4165-b7bc-4a8d-8685-8c7eadd6be32","originalAuthorName":"罗四清"}],"doi":"10.3969/j.issn.1001-4381.2008.10.012","fpage":"43","id":"d3ac0203-099f-4b30-90e0-93322c90ef89","issue":"10","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"eed4c79c-2c83-49d5-8452-3b495e0de408","keyword":"高密度聚乙烯","originalKeyword":"高密度聚乙烯"},{"id":"2e20fcfe-355c-470b-a9dc-692325daf81a","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"62b59748-3a38-4d87-a9a4-e238ae9eb359","keyword":"正温度系数效应","originalKeyword":"正温度系数效应"}],"language":"zh","publisherId":"clgc200810012","title":"HDPE/CB-MWNTs复合材料体系PTC效应","volume":"","year":"2008"},{"abstractinfo":"以聚乙烯为基体材料,用石墨代替炭黑作为填充材料制作了具有明显PTC效应的有机复合导电材料,并系统研究了材料配比、加工工艺对材料PTC强度、电阻转变温度及转变规律;实验结果证明,石墨/聚乙烯体系具有明显的PTC效应和良好的综合性能.","authors":[{"authorName":"李斌","id":"570c1d36-4322-408e-82b4-e3a5fd60d46d","originalAuthorName":"李斌"},{"authorName":"赵文元","id":"24957bd2-fc60-4dca-b26f-2207b0a2f181","originalAuthorName":"赵文元"}],"doi":"","fpage":"158","id":"61baf802-1637-4e58-a2bd-3adf4d264624","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"119935fd-b90b-4b76-b4e6-d2e8ce7425ed","keyword":"石墨","originalKeyword":"石墨"},{"id":"c28c4cdd-e337-4d8a-ada3-4d916130dbe6","keyword":"PTC效应","originalKeyword":"PTC效应"},{"id":"edda1db3-a314-44d5-802a-5ac9fd566dc6","keyword":"导电复合材料","originalKeyword":"导电复合材料"}],"language":"zh","publisherId":"gfzclkxygc200601040","title":"聚乙烯/石墨复合材料PTC效应的研究","volume":"22","year":"2006"},{"abstractinfo":"在宏观尺度上制造出具有纳米结构和纳米效应的高性能金属材料,并揭示这些材料的组织演化特征以实现功能调控,是金属材料学科面临的重大科学问题和需要解决的核心关键技术.阐述金属纳米材料界面、尺度与材料塑变、强化关系的主要研究进展,重点介绍宏观尺寸制备金属纳米复合材料、纳米尺度下经典Hall-Petch关系和复合材料混合定律的适用性、界面特征和尺度效应对材料微观结构、力学性能以及物理特性等的影响,指出面向应用的高性能金属纳米复合材料的发展趋势.","authors":[{"authorName":"卢亚锋","id":"f57249f9-5c56-46e3-a714-e640e3c1ffe9","originalAuthorName":"卢亚锋"},{"authorName":"梁明","id":"cfd715fa-06df-41f8-92ae-31e681d27070","originalAuthorName":"梁明"},{"authorName":"李成山","id":"fe2ee21e-d9d6-4ec2-bfe6-a818504fa20c","originalAuthorName":"李成山"},{"authorName":"冯建情","id":"7ce9609d-af66-45f6-b0bb-559f90446647","originalAuthorName":"冯建情"},{"authorName":"于泽铭","id":"a2fa166a-02f0-4467-81ba-08ce2a3ec1fd","originalAuthorName":"于泽铭"},{"authorName":"徐晓燕","id":"d35db928-e5d2-42bb-aa3a-6b2576a46993","originalAuthorName":"徐晓燕"},{"authorName":"刘庆","id":"31ab59be-e807-43d6-a8f8-7c2dd95a2d51","originalAuthorName":"刘庆"},{"authorName":"柳忠元","id":"be7be037-e00e-4dd9-a51d-734815efd3e3","originalAuthorName":"柳忠元"}],"doi":"","fpage":"1650","id":"f1abe3de-50a7-47e8-a3a5-48aebee59f7f","issue":"6","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"d8427c6a-08ed-4a24-9ff9-1845e99c6990","keyword":"金属纳米材料","originalKeyword":"金属纳米材料"},{"id":"e06299f7-b0ca-49a5-8ac1-b92b7bf49a30","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"af0153d1-c07e-42e7-8683-81aaf0670a35","keyword":"界面","originalKeyword":"界面"},{"id":"fe90ca27-a0aa-4177-acf0-1aa3fbe63dcf","keyword":"尺度效应","originalKeyword":"尺度效应"}],"language":"zh","publisherId":"zgysjsxb201206015","title":"金属纳米复合材料的界面和尺度效应","volume":"22","year":"2012"}],"totalpage":4068,"totalrecord":40680}