Ali Nazari
材料科学技术(英文)
In the present study, fracture toughness of functionally graded steels in crack divider configuration has been modeled. By utilizing plain carbon and austenitic stainless steels slices with various thicknesses and arrangements as electroslag remelting electrodes, functionally graded steels were produced. The fracture toughness of the functionally graded steels in crack divider configuration has been found to depend on the composites' type together with the volume fraction and the position of the containing phases. According to the area under stress-strain curve of each layer in the functionally graded steels, a mathematical model has been presented for predicting fracture toughness of composites by using the rule of mixtures. The fracture toughness of each
layer has been modified according to the position of that layer where for the edge layers, net plane stress condition was supposed and for the central layers, net plane strain condition was presumed. There is a good agreement between experimental results and those acquired from the analytical model.
关键词:
Fracture toughness
Ali Nazari
材料科学技术(英文)
In the present study, fracture toughness of functionally graded steels in crack divider configuration has been modeled. By utilizing plain carbon and austenitic stainless steels slices with various thicknesses and arrangements as electroslag remelting electrodes, functionally graded steels were produced. The fracture toughness of the functionally graded steels in crack divider configuration has been found to depend on the composites' type together with the volume fraction and the position of the containing phases. According to the area under stress-strain curve of each layer in the functionally graded steels, a mathematical model has been presented for predicting fracture toughness of composites by using the rule of mixtures. The fracture toughness of each
layer has been modified according to the position of that layer where for the edge layers, net plane stress condition was supposed and for the central layers, net plane strain condition was presumed. There is a good agreement between experimental results and those acquired from the analytical model.
关键词:
Fracture toughness
Hongyang JING
,
Lianyong XU
,
Lixing HUO
,
Yufeng ZHANG
材料科学技术(英文)
The changes in mechanical properties and fracture toughness by dynamic loading were investigated with experiments. The parameter R, which can reflect the effect of the loading rate and the temperature rising during the high loading rate, could be employed to describe the constituent relation for the typical structure steel and its weld metal. The dynamic loading effect on the stress/strain fields and the temperature variation in the vicinity of the crack tip was analyzed by the finite element method, the dynamic fracture behavior was evaluated based on the local approach. It has been found that the Weibull stress is an effective fracture parameter, independent of the temperature and the loading rate.
关键词:
Fracture toughness
,
null
,
null
Lixing HUO
,
Furong CHEN
,
Yufeng ZHANG
,
Li ZHANG
,
Fangjun LIU
,
Gang CHEN
材料科学技术(英文)
The electron beam local post-weld heat treatment (EBLPWHT) is a rather new method that provides the advantages of high precision, flexibility and efficiency, energy saving and higher productivity. This paper studies the effect of two post-weld heat treatment processes on the microstructure, mechanical properties and fracture toughness of an electron beam welded joints in 30CrMnSiNi2A steel. EBLPWHT, in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were compared. The experimental results show that, after EBLPWHT treatment, the main microstructure of weld was changed from coarse acicular martensite into lath martensite, HAZ was changed from lath martensite, bainite into lower bainite, and base metal was changed from ferrite and pearlite into upper bainite and residual austenite. The microstructures of different zones of joints in FWPWHT condition were tempered sorbite. The properties of welded joints can be improved by the EBLPWHT in some extent, and especially largely for the fracture toughness of welded joints. However the value of fracture toughness of base metal is comparatively low, so appropriate heat treatment parameters should be explored in the future.
关键词:
Post-weld heat treatment
,
null
,
null
,
null
Fang WANG
金属学报(英文版)
A new model for the analysis of fatigue crack growth in the metal structures was proposed. This model shows a promising capability of explaining various fatigue phenomena. The new crack growth model is further completed by a continuous empirical formula for estimating the value of variable fracture toughness during crack propagation and a modified continuous equation for the crack tip stress/strain constraint factor used to calculate the stress intensity factor at the opening level. The prediction results are proved to agree well with the observed phenomena in test.
关键词:
Marine structures
,
Crack growth rate
,
Three dimensional stress state
,
Fracture toughness
,
Crack tip stress/strain constraint factor
Hongyang JING
,
Lianyong XU
,
Lixing HUO
,
Fumiyoshi Minami
材料科学技术(英文)
The relationship between Charpy absorbed energy and the fracture toughness by means of the (crack tip opening displacement (CTOD)) method was analyzed based on the Weibull stress criterion. The Charpy absorbed energy and the fracture toughness were measured for the SN490B steel under the ductile-brittle transition temperature region. For the instrumented Charpy impact test, the curves between the loading point displacement and the load against time were recorded. The critical Weibull stress was taken as a fracture controlled parameter, and it could not be affected by the specimen configuration and the loading pattern based on the local approach. The parameters controlled brittle fracture are obtained from the Charpy absorbed energy results, then the fracture toughness for the compact tension (CT) specimen is predicted. It is found that the results predicted are in good agreement with the experimental. The fracture toughness could be evaluated by the Charpy absorbed energy, because the local approach gives a good description for the brittle fracture even though the Charpy impact specimen or the CT specimen is used for the given material.
关键词:
Local approach
,
null
,
null
,
null
Thuong-Hien LE
,
Young-Hun
,
Seock-Sam KIM
材料科学技术(英文)
The sliding wear behaviors of ZrO2-22 wt pct MgO (MZ) and ZrO2-8 wt pct Y2O3 (YZ) coatings deposited on a cast aluminum alloy with bond layer (NiCrCoAlY) by plasma spray were investigated under dry test conditions at room temperature. Under all load conditions, the wear mechanisms of the MZ and YZ coatings were almost the same. The material transfer and pullout were involved in the wear process of the studied coatings under the test conditions. The wear rate of the MZ coating was less than that of the YZ coating. While increasing the normal load, the wear rates of the MZ and YZ coatings increased. SEM was used to examine the worn surfaces and to elucidate likely wear mechanisms. Energy dispersive X-ray spectroscopy (EDX) analysis of the worn surfaces indicated that material transfer occurred in the direction from the SiC ball to the disk. Fracture toughness had a significant influence on the wear performance of the coatings. It was suggested that the material transfer played an important role in the wear behavior.
关键词:
Plasma spray
,
null
,
null
,
null