{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过TG-DTA、BET-N2吸附和X衍射分析,详细研究了SnO2凝胶在20~700℃区间干燥固化过程中的收缩、失重机理、凝胶骨架纳米结构的变化规律,研究了掺杂元素Sb、溶胶阶段加入的催化剂和溶剂种类对干燥过程固化过程中结构演变的影响。研究发现:SnO2凝胶为1~10nm尺寸的纳米多孔结构,符合圆柱通孔模型。在干燥固化过程分别为20~200℃、200~550℃和>550℃三个不同阶段,分别发生骨架吸附溶剂解附、-acac螯环分解氧化、网链结构驰豫和无定型→晶态转变等四个过程,它们是支配凝胶失重、收缩、固化的主要机理。随固化温度增加,纳米骨架粗化长大但其径长比保持不变,同时Sb加入有细化骨架作用,而催化剂对凝胶结构无明显影响。","authors":[{"authorName":"郭玉忠","id":"dd057992-bd5a-4a6c-a3bf-0e7a06bb4d92","originalAuthorName":"郭玉忠"},{"authorName":"王剑华","id":"70960450-3bc4-417e-b724-5b08c7d3a311","originalAuthorName":"王剑华"},{"authorName":"孙加林","id":"3a89d6d3-dee9-48c9-878c-ca434a0795ab","originalAuthorName":"孙加林"}],"doi":"10.3321/j.issn:1000-324X.2001.03.005","fpage":"410","id":"45390ee4-11a3-4fc2-9c7e-50d9251cd1fd","issue":"3","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"20886d17-5400-4937-bc74-96d4ab8f8c4b","keyword":"SnO2凝胶","originalKeyword":"SnO2凝胶"},{"id":"51fb1088-6345-4850-8286-cf963868a84d","keyword":"干燥-固化过程","originalKeyword":"干燥-固化过程"},{"id":"fb06dcf5-cd6e-48f6-8c3f-1f4400bdad1a","keyword":"骨架结构","originalKeyword":"骨架结构"},{"id":"e67941f4-635f-4565-ba3a-76849568733f","keyword":"圆柱通孔模型","originalKeyword":"圆柱通孔模型"}],"language":"zh","publisherId":"wjclxb200103005","title":"SnO2凝胶干燥固化过程中的结构变化","volume":"16","year":"2001"},{"abstractinfo":"采用聚氨酯丙烯酸酯为研究对象,分别对水溶性、水乳液型紫外光(UV)固化树脂的干燥固化规律进行研究,考察了树脂分子结构、干燥固化条件等因素对干燥固化的影响.通过对涂膜红外干燥过程的研究,发现红外辐射可以将UV固化聚氨酯丙烯酸酯乳液的干燥时间降至30 s左右.对涂膜固化过程的研究表明,固化条件、分子结构和添加物对固化时间都有重要影响,选择合适的条件,固化时间可以缩短至5 s以内.","authors":[{"authorName":"魏燕彦","id":"5c286f6f-bf08-4015-945b-f55263ab7d6c","originalAuthorName":"魏燕彦"}],"doi":"","fpage":"71","id":"ebeee9fd-8995-4a2d-931f-cdd122c30c4c","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"1ea3ff56-7012-432b-a7a9-aae0cdd2e4b7","keyword":"水性涂料","originalKeyword":"水性涂料"},{"id":"f6f92b4d-f0f0-4d18-b894-fe781287e8f7","keyword":"紫外光固化","originalKeyword":"紫外光固化"},{"id":"4fbbc8c1-7c27-4224-b0c6-774901daf143","keyword":"红外干燥","originalKeyword":"红外干燥"},{"id":"c582808d-fa8c-4d37-a317-43e391bc02fa","keyword":"聚氨酯丙烯酸酯","originalKeyword":"聚氨酯丙烯酸酯"},{"id":"e13198a0-e2b2-4551-8286-d844cb31944b","keyword":"凝胶含量","originalKeyword":"凝胶含量"}],"language":"zh","publisherId":"gfzclkxygc200803018","title":"水性紫外光固化聚氨酯丙烯酸酯的干燥固化过程","volume":"24","year":"2008"},{"abstractinfo":"干燥问题是长期以来制约水性双组分聚氨酯木器涂料工业化应用的瓶颈.将微波干燥应用于水性双组分聚氨酯木器涂料的干燥过程,打破了微波干燥只能应用于水性单组分涂料的传统观念,实验结果表明:水性双组分聚氨酯木器涂料经微波干燥形成的漆膜性能略高于常温干燥形成的漆膜,可与溶剂型双组聚氨酯木器涂料相媲美,且固化剂用量减少.","authors":[{"authorName":"吴海生","id":"f42462b2-84d4-4ec0-9e30-c99653150d66","originalAuthorName":"吴海生"},{"authorName":"黄卫","id":"324c2b2a-0ab1-45d9-88b1-b78ac3d74077","originalAuthorName":"黄卫"},{"authorName":"施国萍","id":"bc82f180-5532-4537-b682-51174de1bda7","originalAuthorName":"施国萍"},{"authorName":"高建东","id":"926f937c-584c-46b7-86bd-65236e04055d","originalAuthorName":"高建东"}],"doi":"10.3969/j.issn.0253-4312.2011.01.016","fpage":"61","id":"87efd6b0-3420-4300-844c-721861dbb2eb","issue":"1","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"f9e8508f-f580-4f16-9ef3-4d5e948059c4","keyword":"水性双组分聚氨酯","originalKeyword":"水性双组分聚氨酯"},{"id":"abd48dc2-bd1e-4ae0-93bd-bbe24a2c3db2","keyword":"木器涂料","originalKeyword":"木器涂料"},{"id":"eeebcd47-c65d-4faa-a416-425215f1efc0","keyword":"微波干燥","originalKeyword":"微波干燥"}],"language":"zh","publisherId":"tlgy201101016","title":"微波干燥应用于双组分水性聚氨酯木器漆的干燥过程","volume":"41","year":"2011"},{"abstractinfo":"氮化钒是VT包芯线粉芯材料的一种,使用中对其粒度有严格要求,经过破碎后会产生很多细粉,不能直接使用.为充分利用细粉,拟定分级-造粒-干燥工艺对氮化钒粉末进行处理,干燥工艺是很重要的工序.分析干燥温度、原料粒径、初含水率以及粘合剂配比对氮化钒生球干燥过程的影响,并探讨生球干燥过程,发现干燥速度与时间的关系曲线呈\"单峰\"状和\"双峰\"状,分析这种现象的原因.","authors":[{"authorName":"陈泽民","id":"1240a141-e0fd-416a-83e4-6bee8d86f361","originalAuthorName":"陈泽民"},{"authorName":"孙涛","id":"7e679454-4702-4f2f-8315-8bba2d1df3f9","originalAuthorName":"孙涛"},{"authorName":"李松","id":"79ff5f8a-e9ab-4d2c-be41-302cc8ed6e59","originalAuthorName":"李松"},{"authorName":"柏万春","id":"5aecc39c-6cd5-4cb5-bd24-443b43cc7172","originalAuthorName":"柏万春"}],"doi":"10.3969/j.issn.1004-244X.2009.03.010","fpage":"30","id":"225950b7-a3d7-4360-bfc0-90d39832a1e0","issue":"3","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"9f47f244-5693-43e5-96a1-94b36c09612d","keyword":"氮化钒","originalKeyword":"氮化钒"},{"id":"c970266f-33dd-4ab9-bb2a-0c45701776d4","keyword":"干燥","originalKeyword":"干燥"},{"id":"74d8ef4b-cb46-4f98-80b7-fca94df57601","keyword":"干燥速度曲线","originalKeyword":"干燥速度曲线"}],"language":"zh","publisherId":"bqclkxygc200903010","title":"氮化钒生球干燥过程研究","volume":"32","year":"2009"},{"abstractinfo":"在收缩和非收缩条件下,对胡萝卜的对流干燥特征进行了理论分析.结果表明,干燥速率是试样几何形状、尺寸以及热空气温度、风速、相对湿度的函数.整个干燥过程应划分为外部干燥条件控制的第一干燥阶段和物料内部水分扩散控制的第二干燥阶段.而基于经典干燥理论的恒速干燥阶段和降速干燥阶段的划分,只是特定形状和材质的物料在一定干燥条件下才出现的干燥现象.物科外层单元水分活度可以作为判别物科干燥过程是处于第一干燥阶段还是第二干燥阶段的判断依据,是表征物料干燥特性的特征参数.","authors":[{"authorName":"刘显茜","id":"3f263326-1015-4849-9ece-bb89428e75ae","originalAuthorName":"刘显茜"},{"authorName":"蒋超","id":"64cfe5af-6a91-4eb8-bc14-5e915261d567","originalAuthorName":"蒋超"},{"authorName":"侯宏英","id":"0327b81e-43db-4c9f-9dff-97a8bff001e1","originalAuthorName":"侯宏英"},{"authorName":"陈君若","id":"c6ce3a4f-a5af-450c-9cb1-5f1c437c10ab","originalAuthorName":"陈君若"},{"authorName":"张赛","id":"d4359de6-1e7b-4ddc-a57f-b3b9c67c204b","originalAuthorName":"张赛"}],"doi":"","fpage":"95","id":"7ee0cadd-d8ca-4299-84f7-b965315fd888","issue":"14","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7bb98972-900d-4a01-9876-7112d838bb0e","keyword":"胡萝卜","originalKeyword":"胡萝卜"},{"id":"c354363c-565d-4bc7-939f-3da5391acfce","keyword":"对流干燥","originalKeyword":"对流干燥"},{"id":"d33642ca-827d-4ded-a27b-3c0d24a5d8a7","keyword":"干燥过程","originalKeyword":"干燥过程"},{"id":"047794c9-c977-409b-af96-9b92b9037a79","keyword":"水分活度","originalKeyword":"水分活度"}],"language":"zh","publisherId":"cldb201214024","title":"对流干燥过程理论分析:水分活度","volume":"26","year":"2012"},{"abstractinfo":"对典型城市生活垃圾基元在焚烧炉条件下的干燥过程进行模拟计算,分析其干燥特性.结果表明:垃圾基元干燥过程的升温主要集中在前半段.非生物质垃圾基元具有更易干燥的外边界特性.当考虑生物质垃圾基元的收缩特性时,计算误差比不考虑收缩特性的误差减小46.%.模拟结果与试验结果进行比较吻合较好.","authors":[{"authorName":"陈梅倩","id":"fa72c2c3-9dd6-45be-a374-c0abc0c7cfb4","originalAuthorName":"陈梅倩"},{"authorName":"别舒","id":"d067bd78-d804-4309-b293-8d59842cb322","originalAuthorName":"别舒"},{"authorName":"张衍国","id":"df554876-8df6-47fb-80b8-d2de04aa8c45","originalAuthorName":"张衍国"},{"authorName":"蒙爱红","id":"2e78076d-9af3-484f-ad9b-56f5ce76e4bc","originalAuthorName":"蒙爱红"},{"authorName":"许鑫星","id":"53d81267-31b0-4f27-ad8e-3d644358209a","originalAuthorName":"许鑫星"},{"authorName":"贾力","id":"30446698-295e-4db2-87f1-5b963933bef0","originalAuthorName":"贾力"}],"doi":"","fpage":"491","id":"2ba2b203-b105-4b3e-be8a-df91d8afc5bd","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"d2971ed0-e263-49ee-ade2-ee1c62f289d7","keyword":"城市生活垃圾基元","originalKeyword":"城市生活垃圾基元"},{"id":"164b5ab1-8caf-409c-a259-7655bc2becc9","keyword":"高温","originalKeyword":"高温"},{"id":"ab0e1d5e-63ab-464c-8758-4f4f6baad776","keyword":"干燥","originalKeyword":"干燥"},{"id":"a33e4f96-cfe0-43c0-a0fa-cf8c8a476c99","keyword":"收缩特性","originalKeyword":"收缩特性"},{"id":"f62fdf8f-0f01-42ec-8634-22df1faaf9bb","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb200903034","title":"典型垃圾基元高温干燥过程的数值模拟","volume":"30","year":"2009"},{"abstractinfo":"建立了集流化床内的流动、颗粒传热传质和床层干燥过程为一体的综合数学模型,针对模型各部分的不同特点,分别采用了恰当的数值处理方法进行了数值计算.不同工况下,模型计算与实验结果吻合良好,本文结果有助于深入了解流态化物料干燥机理及各种因素对干燥过程的影响,对干燥设备及干燥工艺的确定具有直接指导作用.","authors":[{"authorName":"淮秀兰","id":"3f22217b-ef71-4bbe-a94d-988255906cd7","originalAuthorName":"淮秀兰"},{"authorName":"王立","id":"44c616dd-ed89-4909-9301-cabc52c13274","originalAuthorName":"王立"},{"authorName":"倪学梓","id":"016137bc-98d3-4b30-bcb2-742fed1c6485","originalAuthorName":"倪学梓"},{"authorName":"屈志云","id":"ea298eb2-e216-408d-ac1b-ede02ea12985","originalAuthorName":"屈志云"}],"doi":"","fpage":"59","id":"ee42566f-49e0-4b30-8169-9636976d78b1","issue":"10","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"b5177dee-037e-471c-a1cd-95212a9dfce2","keyword":"流化床","originalKeyword":"流化床"},{"id":"030d3a90-a361-44ab-85e9-5b5efbcf7c39","keyword":"散粒状物料","originalKeyword":"散粒状物料"},{"id":"73a4f813-4112-4a96-af84-bffe44d7db20","keyword":"干燥","originalKeyword":"干燥"},{"id":"5992fdf1-1130-4808-8bb9-978f9c5775dd","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"gt199810015","title":"流化床散粒状物料干燥过程模拟研究","volume":"33","year":"1998"},{"abstractinfo":"本文采用三维孔隙网络模型从孔隙尺度上对质子交换膜燃料电池气体扩散层中水分蒸发的干燥过程进行了模拟,并考虑了阴极流道的影响.计算结果表明毛细力在气体扩散层的干燥过程中起主要作用,气相从阴极流道底部开始,以沿气体扩散层厚度方向侵入为先,直到到达气体扩散层底部,随后气相才向流道肩部水平延伸侵入.蒸发速率随气体扩散层中水饱和度的变化可分为陡降、缓降、持平、再缓降四个阶段.","authors":[{"authorName":"吴睿","id":"19a07f1e-7a79-42d3-b6f8-89ed451221e5","originalAuthorName":"吴睿"},{"authorName":"朱恂","id":"672abc86-1c5d-4d3e-a940-2cbb1c9e0c4a","originalAuthorName":"朱恂"},{"authorName":"廖强","id":"42a905ca-cb30-4fba-b6c6-c86512dc89fe","originalAuthorName":"廖强"},{"authorName":"王宏","id":"0f3b4d46-3323-4d09-97b1-a3151a01ad9e","originalAuthorName":"王宏"},{"authorName":"丁玉栋","id":"608b0a7c-e14d-4325-a013-ac2a7b3be297","originalAuthorName":"丁玉栋"},{"authorName":"李俊","id":"0e95df7d-d6ac-493e-a66b-8bb95d5cb3db","originalAuthorName":"李俊"}],"doi":"","fpage":"97","id":"181f9333-3a67-472a-8a53-4f942b3049fd","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a1f27647-333e-40ac-bd55-62bc2a601b22","keyword":"质子交换膜燃料电池","originalKeyword":"质子交换膜燃料电池"},{"id":"5f3a819f-431b-47fb-80cd-2fd9520f5456","keyword":"气体扩散层","originalKeyword":"气体扩散层"},{"id":"987b047c-2351-4647-95be-92c8222105af","keyword":"干操","originalKeyword":"干操"},{"id":"6f95c813-29b9-4cd4-b0ce-44722d0e0709","keyword":"孔隙网络模型","originalKeyword":"孔隙网络模型"},{"id":"c226c514-2c29-4605-9524-52729d1e3a7d","keyword":"毛细力","originalKeyword":"毛细力"}],"language":"zh","publisherId":"gcrwlxb201101024","title":"PEMFC气体扩散层干燥过程孔隙网络模拟","volume":"32","year":"2011"},{"abstractinfo":"采用连续加热和间歇加热(间歇2h和间歇6h)方式对小径木锯材进行常规干燥,研究了干燥过程中小径木的表层应力(全应力和残余应力)发生、发展变化规律.结果表明,随着试材的含水率降低,其表层全应力最初表现为拉应力,拉应力增大到最大值后,逐渐减小直至消失,然后转变为压应力,压应力达到最大值后,逐渐减小直到干燥结束;残余应力是先逐渐增大,达到最大后又减小;3种加热方式下,试材表层应力的变化趋势基本一致,但是试材的表层应力间歇加热的明显小于连续加热的,间歇6h试材的表层应力最小;同一含水率水平下,表层应力弦切板的比径切板大.","authors":[{"authorName":"郭明辉","id":"cba0dc3b-eff1-4f3e-8efb-03c068e54762","originalAuthorName":"郭明辉"},{"authorName":"赵西平","id":"c2a65c5c-0d98-40c1-a54e-1d1e120853c7","originalAuthorName":"赵西平"},{"authorName":"闫丽","id":"3554fc24-55d8-4631-884a-867c9b648951","originalAuthorName":"闫丽"}],"doi":"10.3969/j.issn.1005-0299.2007.03.026","fpage":"401","id":"55788b67-cb47-4d81-82db-f482ea440738","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"c36e36de-87c5-487f-9c76-ec1cd834ab09","keyword":"小径木","originalKeyword":"小径木"},{"id":"0603f257-e76f-4034-8ba9-8a92bba7245a","keyword":"锯材","originalKeyword":"锯材"},{"id":"10bde4bb-735a-4420-9112-ac9e76e62faa","keyword":"常规干燥","originalKeyword":"常规干燥"},{"id":"7dabc72c-36d1-4f72-80c6-d7821b6cd334","keyword":"表层应力","originalKeyword":"表层应力"},{"id":"e1d26503-e954-463d-98b9-68cdfeb12d30","keyword":"加热方式","originalKeyword":"加热方式"}],"language":"zh","publisherId":"clkxygy200703026","title":"干燥过程中小径木表层应力的研究","volume":"15","year":"2007"},{"abstractinfo":"采用凝胶注模工艺制备固体氧化物燃料电池(SOFC)阳极材料NiO/YSZ是目前的研究热点之一.本文主要研究了凝胶注模工艺中引发剂和催化剂的加入量对凝胶固化时间的影响,干燥温度对坯体失重的影响,固相含量、造孔剂的种类及用量对瓷体收缩率的影响,并对还原后瓷体的电性能进行了表征.采用SEM、EDS方法分析表征样品.实验结果表明:在实验选定的100 mL浆料中,浓度为5wt%引发剂的加入量为2.0 mL,浓度为0.5vol%催化剂的加入体积量为1.0 mL,凝胶时间可以控制在20 min以内.NiO/YSZ阳极材料最佳干燥温度是25 ℃,固相含量为45vol%、采用15wt%石墨作为造孔剂,在1350 ℃烧成的NiO/YSZ阳极与固体电解质YSZ收缩率相匹配,氢气还原后NiO/YSZ阳极在600~800 ℃电导率达到800 S/cm,符合SOFC阳极材料电导率的要求.","authors":[{"authorName":"李伟","id":"87b76d86-16a8-4c1a-8a5e-dfb2ae602876","originalAuthorName":"李伟"},{"authorName":"韩敏芳","id":"3ef3cf8b-8409-4169-9cf7-786fa23f948a","originalAuthorName":"韩敏芳"}],"doi":"","fpage":"874","id":"517b8f07-cf82-454f-af30-ef9249a8d3f8","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"aa3bf7b9-c6b2-491c-bc5f-71b02931fc3c","keyword":"NiO/YSZ阳极","originalKeyword":"NiO/YSZ阳极"},{"id":"92620fde-bad5-4dd3-bc7e-5a2c579b160c","keyword":"凝胶注模工艺","originalKeyword":"凝胶注模工艺"},{"id":"743cad25-9994-4441-8bd4-f94b7b61e03f","keyword":"凝胶固化","originalKeyword":"凝胶固化"},{"id":"1106fb12-8af2-4ea1-96fc-89e453a0b454","keyword":"干燥工艺","originalKeyword":"干燥工艺"},{"id":"f495934f-3c62-4f5b-b42b-57745616f764","keyword":"烧结工艺","originalKeyword":"烧结工艺"}],"language":"zh","publisherId":"gsytb200905003","title":"NiO/YSZ浆料凝胶固化干燥、排胶及烧结工艺研究","volume":"28","year":"2009"}],"totalpage":4603,"totalrecord":46024}