{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"从我国能源战略的高度和铝瓷产业生存、发展的角度,阐述论证了低温烧成的必要性和重要性.基于铝瓷烧结的内在规律和固有特点,指出低温烧结对铝瓷性能有改善作用,提出了几种降低铝瓷烧成温度的可行技术方案.","authors":[{"authorName":"曹南萍","id":"515a471e-0727-40d2-b33d-b890b18e930e","originalAuthorName":"曹南萍"},{"authorName":"王仲军","id":"f43bb4bf-ec64-4744-8f85-212792deb36b","originalAuthorName":"王仲军"},{"authorName":"南小英","id":"89958e3c-fae8-46d0-b8dc-05b1af0a76c6","originalAuthorName":"南小英"},{"authorName":"欧阳芳","id":"dd5cd15b-d23b-4950-9296-d2ad763ec262","originalAuthorName":"欧阳芳"},{"authorName":"王静海","id":"e4182806-b1e6-4e7c-8842-b7df929c5ab4","originalAuthorName":"王静海"}],"doi":"10.3969/j.issn.1001-1625.2006.04.033","fpage":"150","id":"d1bb28e9-1517-454d-bbe0-ef3d691f014f","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"5f23577d-6639-4723-b550-3614e05f6fb5","keyword":"氧化铝陶瓷","originalKeyword":"高氧化铝陶瓷"},{"id":"d0891fc2-0c18-4b8a-b1ca-cdd0cfa298ad","keyword":"低温烧结技术","originalKeyword":"低温烧结技术"},{"id":"1678d036-bd07-4b53-b5a3-82d690e5484e","keyword":"节能战略","originalKeyword":"节能战略"},{"id":"f2e0b134-4879-4c9e-a7cf-0acd034f3b53","keyword":"企业竞争力","originalKeyword":"企业竞争力"}],"language":"zh","publisherId":"gsytb200604033","title":"降低铝瓷烧成温度的研究","volume":"25","year":"2006"},{"abstractinfo":"氧化铝陶瓷具有硬度、耐磨性好、弹性模量和抗压强度、绝缘性好、材料性能稳定性好的特点,因而成为惯性仪表中部分关键零部件的基体材料.本文结合某惯性元件的技术要求,讨论了氧化铝陶瓷的性能、制备工艺和表面改性技术.","authors":[{"authorName":"李立勇","id":"69a2fdaf-a632-4101-a15a-9da0b395a54f","originalAuthorName":"李立勇"},{"authorName":"朱学毅","id":"ab0388ed-a50b-4aab-9121-5187d5a6d74d","originalAuthorName":"朱学毅"},{"authorName":"屠启基","id":"a58b187d-8d3f-4aa9-b93e-3c50ee969d0e","originalAuthorName":"屠启基"}],"doi":"10.3969/j.issn.1001-1625.2007.05.029","fpage":"985","id":"c974c285-7da4-415d-a014-941a54ef6c0e","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"016a57b5-805f-46e7-8abc-5aa1a6f11879","keyword":"氧化铝陶瓷","originalKeyword":"氧化铝陶瓷"},{"id":"ddf20e18-ad76-4305-b6b9-d7d2dd80984b","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"14c740c8-0294-4756-9458-79c8562bc514","keyword":"表面改性","originalKeyword":"表面改性"},{"id":"33ee16fe-3a3c-4bef-9476-faa5c79c57ea","keyword":"惯性元件","originalKeyword":"惯性元件"}],"language":"zh","publisherId":"gsytb200705029","title":"惯性元件用氧化铝陶瓷","volume":"26","year":"2007"},{"abstractinfo":"采用控制氧化铝显微结构的方法,通过向氧化铝材料中引入不同粒径的板状氧化铝颗粒,同时采用超细粉为初始原料来改善氧化铝陶瓷的力学性能.氧化铝试样于1550℃和1600℃下烧成并加入MgO和Y2O3来抑制晶粒的过分长大.实验结果表明:加入板状氧化铝颗粒后,氧化铝材料的抗折强度得到明显提高.","authors":[{"authorName":"沈毅","id":"93dab608-4de1-4956-8d6e-df1509704d66","originalAuthorName":"沈毅"},{"authorName":"杨正方","id":"9cb148a2-05a2-4cef-a378-0999cec73dc6","originalAuthorName":"杨正方"}],"doi":"10.3969/j.issn.1001-1625.2001.06.012","fpage":"51","id":"9ef83ca2-c164-4040-88e3-b9e02ef0a378","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"550bcbff-b43b-49f1-a9bf-0d3c98455ac1","keyword":"板状氧化铝","originalKeyword":"板状氧化铝"},{"id":"e69b5da2-8878-4dd0-8034-eea98f8450a3","keyword":"增强","originalKeyword":"增强"},{"id":"37635e17-88be-49bb-9a8a-5e477d028f20","keyword":"临界粒径","originalKeyword":"临界粒径"}],"language":"zh","publisherId":"gsytb200106012","title":"板状氧化铝增强氧化铝陶瓷","volume":"20","year":"2001"},{"abstractinfo":"采用阳极氧化法在铝表面生成一层氧化铝陶瓷,利用该绝缘陶瓷层替代铝基板中的绝缘胶膜,制备了一种阳极氧化铝陶瓷膜铝基板,并将该铝基板应用于LED照明.测试结果显示:阳极氧化铝陶瓷膜的电气强度可达120 V/μm,体积电阻率大于106 MΩ?cm,采用该技术制备的铝基板的\"整体热阻\"可降低至0.34 K?cm2/W.LED灯具应用表明,其热阻比普通铝基板的热阻降低9.1℃/W,比填料型导热铝基板降低4.6℃/W,因此,基于该技术的铝基板具有明显的导热性能优势.","authors":[{"authorName":"徐文","id":"b50fec73-5dd6-4920-8627-c5b3c7ba5ca1","originalAuthorName":"徐文"},{"authorName":"张诗娟","id":"7220aee2-5595-4dd0-b683-4475a62d049b","originalAuthorName":"张诗娟"},{"authorName":"王文峰","id":"6d840da8-1298-4ccf-aff2-2d2fd4d30e1b","originalAuthorName":"王文峰"},{"authorName":"王勇涛","id":"e3f2977b-133c-4f2a-8cb3-e22c1cb2cc0d","originalAuthorName":"王勇涛"},{"authorName":"张军","id":"f1f1a95f-d9f4-4d90-9bdd-a26af08cd97f","originalAuthorName":"张军"}],"doi":"","fpage":"19","id":"9da943d3-28db-4468-9bb9-7b6292d3f592","issue":"8","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"735acb7a-0656-4593-966b-8ccb5574e9cb","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"3e017e2a-e832-43ba-9a9d-69e2e0c7d75d","keyword":"铝基板","originalKeyword":"铝基板"},{"id":"7a8675d9-4f72-4d4a-be43-a9c34b210e47","keyword":"LED照明","originalKeyword":"LED照明"}],"language":"zh","publisherId":"jycltx201508004","title":"导热阳极氧化铝陶瓷膜铝基板的研制","volume":"","year":"2015"},{"abstractinfo":"分别以TiO2和MgO-La2O3复合物为烧结助剂,采用常压烧结工艺制备氧化铝陶瓷.探讨了两类烧结助剂对氧化铝陶瓷显微结构的影响,并分析了其气孔排出过程.结果表明,添加TiO2可以降低氧化铝陶瓷的烧结温度,易发生晶粒二次长大、形成晶内孔.添加MgO-La2O3复合烧结助剂降低烧结温度同时产生第二相物质,阻碍晶界迁移,减小晶粒尺寸,提高坯体致密度.","authors":[{"authorName":"殷剑龙","id":"ce08a5f1-edfb-4962-b64d-1e97d42164ea","originalAuthorName":"殷剑龙"},{"authorName":"王修慧","id":"e458f796-ea9f-457b-9071-d2fb14d984ec","originalAuthorName":"王修慧"},{"authorName":"张野","id":"1101fe9e-8f7b-469c-8095-9f235906391b","originalAuthorName":"张野"},{"authorName":"赵春娟","id":"3845d1bd-94b1-4847-801a-1aa216b89b6b","originalAuthorName":"赵春娟"},{"authorName":"王絮","id":"92829ed9-cb1c-40b1-9bef-5ee35cbe8ec3","originalAuthorName":"王絮"},{"authorName":"宏","id":"82376df8-0f27-4223-ac10-4241bca0b774","originalAuthorName":"高宏"},{"authorName":"杨金龙","id":"feb013e3-7910-4c70-b0bd-3ddec3036a91","originalAuthorName":"杨金龙"}],"doi":"","fpage":"16","id":"bba08039-74b0-4756-a4ca-2bb5b462f446","issue":"5","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"a46ca586-77e3-48d9-b904-1786a3fe31bc","keyword":"氧化铝陶瓷","originalKeyword":"高纯氧化铝陶瓷"},{"id":"6a24b2fc-11a3-41c3-9129-a7f6a7ee6001","keyword":"烧结助剂","originalKeyword":"烧结助剂"},{"id":"e12f5cff-0eec-467c-82c3-41ed615f2990","keyword":"致密度","originalKeyword":"致密度"},{"id":"3bf0194b-4a61-452b-9a2b-9757f1c14779","keyword":"气孔","originalKeyword":"气孔"}],"language":"zh","publisherId":"xitu201405004","title":"烧结助剂对氧化铝陶瓷致密化过程的作用","volume":"35","year":"2014"},{"abstractinfo":"综述了不同杂质及掺杂对氧化铝陶瓷介电损耗影响的研究进展.原料中的杂质会增加氧化铝陶瓷的介电损耗,但可以通过掺杂来提高氧化铝陶瓷的介电损耗.MgO的加入在低频下会增加氧化铝陶瓷的介电损耗;但在微波频段,当MgO的加入量大于Mg在氧化铝中的固溶极限时,通过优化烧结工艺,可以得到1×10-5量级的介电损耗.加入适量的TiO2可以降低氧化铝在微波频段的损耗,但其作用机理还有待进一步研究.","authors":[{"authorName":"司文捷","id":"799f3895-2e69-4d70-be9f-5011148a8570","originalAuthorName":"司文捷"},{"authorName":"刘人淼","id":"5791fa54-0293-4c8d-9b23-dd130d9bce9d","originalAuthorName":"刘人淼"}],"doi":"","fpage":"445","id":"8f437e6d-b727-4377-aac5-f8d92d08a2b3","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c389e02d-0adf-47d6-b96e-76f5cf01e688","keyword":"氧化铝陶瓷","originalKeyword":"氧化铝陶瓷"},{"id":"bdefd633-c2fc-4b2b-a10a-290a2580addc","keyword":"介电损耗","originalKeyword":"介电损耗"},{"id":"5ac9f55c-dbce-47b9-bf15-1998eae0cb1a","keyword":"杂质","originalKeyword":"杂质"},{"id":"65761f31-dc31-42c5-8d47-8ac8f178be4a","keyword":"掺杂","originalKeyword":"掺杂"}],"language":"zh","publisherId":"xyjsclygc2007z1129","title":"掺杂对氧化铝陶瓷介电损耗的影响","volume":"36","year":"2007"},{"abstractinfo":"平面冲击压缩下材料由弹性到非弹性变形转变的临界值对应着材料的动态压缩强度,高压和应变率强烈影响材料的强度.采用粘塑性比拟法建立了材料发生非弹性变形的动态屈服条件,并引入Drucker-Prager静态屈服准则,可以联合考虑动态压缩强度的高压和应变率效应,据此提出了新的Hugoniot弹性极限表征形式.利用轻气炮进行了氧化铝陶瓷平板冲击实验,VISAR测试了样品的自由面速度历程,讨论了氧化铝陶瓷动态压缩强度的测定和存在的不确定性问题.","authors":[{"authorName":"刘占芳","id":"349eeb30-1729-4c0b-8229-bad126179ab8","originalAuthorName":"刘占芳"},{"authorName":"冯晓伟","id":"e18c3367-4ba5-45de-83d8-e3cfd42de3e1","originalAuthorName":"冯晓伟"},{"authorName":"张凯","id":"4db61a20-4beb-44b6-9237-59d9d81f8777","originalAuthorName":"张凯"},{"authorName":"颜世军","id":"b7566bb9-ee1b-4161-bb11-2dab0ed7ba06","originalAuthorName":"颜世军"}],"doi":"","fpage":"2087","id":"ff1635df-b7d4-4f07-b756-4286e1684170","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"edc5e1ea-5631-4db4-8eaa-c2232f2aeeb2","keyword":"氧化铝陶瓷","originalKeyword":"氧化铝陶瓷"},{"id":"e6e37619-9c61-4765-934a-2a35eda35541","keyword":"Hugoniot弹性极限","originalKeyword":"Hugoniot弹性极限"},{"id":"a38de043-1921-4b11-8b02-58449660708e","keyword":"平板冲击实验","originalKeyword":"平板冲击实验"},{"id":"d65882e6-ceef-4669-92e9-e32dad494b33","keyword":"动态屈服条件","originalKeyword":"动态屈服条件"}],"language":"zh","publisherId":"gncl201012013","title":"氧化铝陶瓷动态压缩强度的高压和应变率效应","volume":"41","year":"2010"},{"abstractinfo":"以片状氧化铝晶种作为第二相,采用无压烧结制备了氧化铝陶瓷,分析了片状氧化铝含量对氧化铝陶瓷微观结构的影响,采用扫描电子显微镜(SEM)观察分析试样的断口形貌;采用压痕法计算试样的断裂韧性(KIC)值;研究了不同含量的晶种引入量对氧化铝陶瓷断裂韧性的影响。结果表明烧结温度为1575℃时,相对致密度可以达到96.7%;片状氧化铝晶种的引入能够显著提高氧化铝陶瓷的断裂韧性;其片晶的裂纹偏转、片晶拔出效应等增韧机制发挥了主导作用;随着片状氧化铝含量的提高,氧化铝陶瓷的力学性能逐渐提高,当掺杂含量达到35%(质量分数)时,KIC达到6.4MPa.m1/2,当含量继续增加,KIC呈现逐渐降低的趋势。","authors":[{"authorName":"于佳伟","id":"9842115f-dd98-4fc1-a959-f3ef887001ae","originalAuthorName":"于佳伟"},{"authorName":"廖其龙","id":"33af89bb-7f67-4f16-88c1-af0a3392f260","originalAuthorName":"廖其龙"}],"doi":"","fpage":"1833","id":"7632341f-3acf-46d1-9f9d-2c53404fabda","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"fbf4a6f7-d72c-4e93-aafa-b19b9bd9c48c","keyword":"片状氧化铝","originalKeyword":"片状氧化铝"},{"id":"2cd2ce04-998c-4b21-a7db-733223b45c6b","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"12e07557-072b-4fc3-86bf-feb4f97479dc","keyword":"增韧","originalKeyword":"增韧"},{"id":"6b168c2a-67f3-4de2-bb3e-7faa8be7bed3","keyword":"断裂韧性","originalKeyword":"断裂韧性"}],"language":"zh","publisherId":"gncl201110026","title":"片状氧化铝晶种对氧化铝陶瓷断裂韧性的影响","volume":"42","year":"2011"},{"abstractinfo":"按照平面冲击波设计原则,设计并完成了氧化铝陶瓷在一维应变条件下冲击压缩实验,通过VISAR测试得到了样品自由面质点速度历程.采用理论方法对陶瓷样品的冲击压力和压力脉冲作用时间进行了预估,实验的冲击压力水平为6.87~7.25GPa,应变率范围为0.43×104~2.93×104/s.通过对实验结果的判读,获得了材料的Hugoniot弹性极限,分析讨论了高压率状态下陶瓷的动态强度和破坏特性.","authors":[{"authorName":"唐录成","id":"83e9f9e6-ba76-4315-b5c8-357a10398fa3","originalAuthorName":"唐录成"},{"authorName":"刘占芳","id":"611668ec-ef63-4de4-a60e-dd496917094f","originalAuthorName":"刘占芳"},{"authorName":"常敬臻","id":"05375679-439f-4d20-b0df-96b8fedf8315","originalAuthorName":"常敬臻"},{"authorName":"李建鹏","id":"fe90c6da-d09c-4746-99e3-7f157a70f6b2","originalAuthorName":"李建鹏"}],"doi":"","fpage":"261","id":"0b5441b2-3ed7-4ce4-baf3-9cea7f9e901c","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"900d29b6-c347-4c9d-a851-7a7130e1b09e","keyword":"动态强度","originalKeyword":"动态强度"},{"id":"dea4de58-9501-4625-9cb4-15f7c7d314da","keyword":"氧化铝陶瓷","originalKeyword":"氧化铝陶瓷"},{"id":"2683c969-85bf-4e18-a5fc-4e52e96cc2e7","keyword":"破坏","originalKeyword":"破坏"},{"id":"48e562c2-5e55-4208-8178-0f6dce3255a1","keyword":"二次压缩","originalKeyword":"二次压缩"},{"id":"6ad15b39-0bca-4711-9155-e620c82f875c","keyword":"Hugoniot弹性极限","originalKeyword":"Hugoniot弹性极限"}],"language":"zh","publisherId":"gncl200802025","title":"氧化铝陶瓷在高压率条件下动态特性","volume":"39","year":"2008"},{"abstractinfo":"为提高真空中陶瓷绝缘子的整体耐压水平,对真空中氧化铝陶瓷的沿面闪络行为进行研究,选用 95氧化铝陶瓷和掺锰铬氧化铝陶瓷进行表面耐压试验,结果表明:测试过程对陶瓷绝缘子沿面闪络电压有较大影响;在相同条件下,掺锰铬瓷的沿面耐压能力明显比 95氧化铝陶瓷;同时,真空中原始表面较磨加工表面具有更高的耐压强度.","authors":[{"authorName":"雷杨俊","id":"bf4e6266-3d91-40cb-b963-30286f953818","originalAuthorName":"雷杨俊"},{"authorName":"肖定全","id":"4b399548-6497-4854-8024-f3e2d1388721","originalAuthorName":"肖定全"}],"doi":"10.3969/j.issn.1009-9239.2004.03.010","fpage":"29","id":"cb54db24-85a8-43c9-9ce2-b520165ef96c","issue":"3","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"a2ecece4-454e-45dd-aaf6-649f77984655","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"35363900-af62-48a3-a63e-04ed1fa77446","keyword":"陶瓷","originalKeyword":"陶瓷"},{"id":"147bd075-9bec-45e4-9cb6-b80d9ad93e7c","keyword":"闪络电压","originalKeyword":"闪络电压"},{"id":"83cd1720-cd26-448d-9ce1-97002e086ddf","keyword":"测试过程","originalKeyword":"测试过程"}],"language":"zh","publisherId":"jycltx200403010","title":"真空中氧化铝陶瓷表面耐压试验研究","volume":"37","year":"2004"}],"totalpage":5496,"totalrecord":54960}