Christina Scheu
,
Min Gao
,
Manfred Rühle
材料科学技术(英文)
The bonding and electronic structure of Cu/(0001)Al2O3 and Cu/(1120)Al2O3 interfaces has been studied experimentally using spatially-resolved transmission electron energy loss spectroscopy. The specimen were prepared by depositing Cu on single-crystal a-Al2O3 substrates, which have been Ar+-ion sputter-cleaned prior to the growth of Cu. For both orientations of the a-Al2O3 substrate, atomically abrupt interfaces formed as determined by high-resolution transmission electron microscopy. The investigations of the interfacial Cu-L2,3, Al-L2,3 and O-K energy loss near-edge structures, which are proportional to the site- and angular-momentum-projected unoccupied density of states above the Fermi level, indicate the existence of metallic Cu-Al bonds at the Cu/Al2O3 interface independent of the substrate orientation.
关键词:
Electronic structure
,
null
,
null
,
null
Li CHEN
,
Hua LI
,
Liangmo MEI
材料科学技术(英文)
The electronic structures of new superconducting perovskite MgCNi3 and related compounds MgCNi2T (T=Co, Fe, and Cu) have been studied using MS-Xα method. In MgCNi3, the main peak of density of states is located below the Fermi level and dominated by Ni d. From the results of total energy calculations, it was found that the number of Ni valence electron decreases faster for the Fe-doped case than that for the Co-doped case. The valence state of Ni changes from +1.43 in MgCNi2Co to +3.02 in MgCNi2Fe. It was confirmed that Co and Fe dopants in MgCNi3 behave as a source of d-band holes and the suppression of superconductivity occurs faster for the Fe-doped case than that for the Co-doped case. In order to explain the fact that Co and Fe dopants in MgCNi3 behave as a source of d-band holes rather than magnetic scattering centers that quench superconductivity, we have also investigated the effects of electron (Cu) doping on the superconductivity and found that both electron (Cu) doping and hole (Co, Fe) doping quench superconductivity exist. Comparing with the hole (Co) doping, there was no much difference between Cu and Co doping. This suggests that Co and Fe doping do not act as magnetic impurity.
关键词:
Electronic structure
,
null
,
null
Dong CHEN
,
Jingdong CHEN
,
Yinglu ZHAO
,
Hailiang HUO
,
Benhai YU
,
Deheng SHI
金属学报(英文版)
doi:10.1016/S1006-7191(08)60106-4
The crystal and electronic structures of LaNi4.75Sn0.25 intermetallics and LaNi4.5Sn0.5Hy (y=2.0, 2.5) intermediate phase have been investigated by the full-potential linearized augmented plane wave (FP-LAPW) method. Hydrogen occupation sites in LaNi4.5Sn0.5Hy have been determined based on Westlake$'$s criterions: (1) the minimum hole radius is 0.04~nm; (2) the minimum H-H distance is 0.21~nm; as well as geometry optimizations and internal coordinates optimizations. We find that hydrogen atoms prefer to occupy the 12n*, 6m, 12o, 6m* sites in LaNi4.5Sn0.5H2.0 and the 6m*, 4h, 6m, 12o, 12n* sites in LaNi4.5Sn0.5H2.5. The specific coordinates of hydrogen atoms in LaNi4.5Sn0.5Hy are also determined. The results show that hydrogen atoms tend to keep away from tin atoms. The maximum hydrogen content decreases compared with LaNi5. The interactions between Sn and Ni with H play a dominate role in the stability of LaNi4.5Sn0.5-H system. Lattice expansion and increment of Fermi energy E F show that both Sn and H atoms decrease structural stability of these alloys.
关键词:
Rare-earth intermetallics
,
null
,
null
,
null
Xuyan XUE
,
Chunlei WANG
,
Weilie ZHONG
材料科学技术(英文)
The crystal and electronic structure of antiferroelectric squaric acid is studied using density functional theory method, and the exchange correlation effects are treated by the generalized approximation. In order to understand the ferroelectricity of H2SQ in the molecular plane and the antiferroelectricity in whole crystal, the density of states, charge density distribution and band structure are calculated. The result showed that O2p and C2p play important roles in the interactions between layers. The hybridizations of O2s-H1s and O2p-H1s are responsible for the tendency to ferroelectricity within each layer.
关键词:
Antiferroelectricity
,
null
,
null