{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用冷壁装置化学气相沉积(CVD)制备纳米碳管,以乙炔(C2H2)为碳源气体,研究了2种催化剂(镍、铁)、3种基底、3种稀释气体、3种稀释气体和碳源气体流量比以及温度对CVD法生长纳米碳管的影响,用SEM和TEM分析了产物的形貌.结果表明,镍催化活性高于铁的催化活性.与石墨和纯铁基底相比,以单晶硅基底生长的纳米碳管纯度更高,管壁更干净.3种稀释气体和碳源气体流量比(2/1、10/1、19/1)中,以流量比为10/1时生长纳米碳管效果最好.3种稀释气体(氨气、氢气、氮气)中,以氨气最好.随着生长温度的升高,催化剂的活性提高,有利于碳的有序排列,但生长的碳纳米管直径增大.当基底为单晶硅、催化剂镍膜厚度为20nm、氨气气氛、生长温度为850℃时,得到了近似定向生长的纳米碳管.","authors":[{"authorName":"韩栋","id":"8720327c-9f62-4cf5-83f8-a33b5af102f7","originalAuthorName":"韩栋"},{"authorName":"乔生儒","id":"01797ca5-1544-412a-b3d7-e4270737ab78","originalAuthorName":"乔生儒"},{"authorName":"邓波","id":"aba141a0-09fe-44f1-9b67-942a86ce36c2","originalAuthorName":"邓波"},{"authorName":"李玫","id":"a9e209c9-a1f3-4564-90ff-3db029c277af","originalAuthorName":"李玫"}],"doi":"","fpage":"78","id":"1ac470f8-9148-43e5-bc5c-e292c314a45e","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"01b7beb8-c6b8-4549-83db-e6969b14b190","keyword":"冷壁CVD","originalKeyword":"冷壁CVD"},{"id":"c4b31802-3a88-4838-a5b8-0126bf97c5b9","keyword":"纳米碳管","originalKeyword":"纳米碳管"},{"id":"c19da5ec-f953-4386-8ff5-defbfa8a94b4","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"d7200a4d-1a37-4073-a28d-ac9c6f7441db","keyword":"基底","originalKeyword":"基底"},{"id":"98a86aed-52cd-4a06-9320-4e52eac51aa9","keyword":"稀释气体","originalKeyword":"稀释气体"},{"id":"65fc10d0-c028-4b2d-b62f-0176af8fc235","keyword":"流量比","originalKeyword":"流量比"},{"id":"24ce76bb-5a46-4271-adef-ce5cb08336ff","keyword":"温度","originalKeyword":"温度"}],"language":"zh","publisherId":"cldb2005z2024","title":"冷壁装置化学气相沉积制备纳米碳管","volume":"19","year":"2005"},{"abstractinfo":"选择合适的沉积室内壁材料是热壁化学气相沉积制备Pt薄膜过程中降低前驱体在沉积室内壁上大量消耗,进而保证沉积室内Pt前驱体分压的关键.本研究对比了Pt在镍基高温合金,备选沉积室内壁材料——有氧化层的Cu以及紫铜表面的沉积的难易程度,发现在有氧化层的Cu的表面Pt薄膜很难沉积,因此当镍基高温合金为沉积基体时有氧化层的Cu可以作为热壁CVD的沉积室内壁衬底材料,但是只能一次性使用.","authors":[{"authorName":"李颖","id":"66dfe93d-d091-4690-a8aa-ca95272b7238","originalAuthorName":"李颖"},{"authorName":"胡劲","id":"7f6c41c8-2695-4c42-8099-6efbd80e1122","originalAuthorName":"胡劲"},{"authorName":"武晋文","id":"007a2c67-c098-42dd-b506-2deeb161fd9a","originalAuthorName":"武晋文"},{"authorName":"王玉天","id":"3eac9e5d-23dd-4d04-9e47-da07b139f445","originalAuthorName":"王玉天"},{"authorName":"于晓东","id":"179c68b2-8c39-460a-b674-eab3c5a85062","originalAuthorName":"于晓东"},{"authorName":"谭成文","id":"c4e31caa-8d50-4d87-aa6a-c6edc5d0e797","originalAuthorName":"谭成文"}],"doi":"","fpage":"445","id":"9040f202-d972-4984-80d9-f051b48bba59","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"635013b5-ef91-4e2a-afa7-e069b938005b","keyword":"Pt薄膜","originalKeyword":"Pt薄膜"},{"id":"a84b1100-fd36-4052-8a8f-7bcae9ab968b","keyword":"热壁CVD","originalKeyword":"热壁CVD"},{"id":"b375bb0e-3c40-4f4b-996b-0ffb41baf29d","keyword":"沉积室内壁材料","originalKeyword":"沉积室内壁材料"}],"language":"zh","publisherId":"xyjsclygc201602035","title":"热壁CVD制备铂薄膜的沉积室内壁材料选择研究","volume":"45","year":"2016"},{"abstractinfo":"为了降低高炉铜冷却壁的造价,开发了一种厚度为90 mm的薄型铜冷却壁。通过热态试验测量了高温下冷却壁的温度分布和冷面应变分布,通过数值模拟计算了冷却壁的温度场和应力应变场。热态试验和数值模拟结果符合较好。研究结果表明,薄型铜冷却壁能承受的最大热负荷为220 kW/m2,在高炉炉况下的基体温度以及由此产生的热应力都不足以使其破坏,满足长寿高炉的要求。","authors":[{"authorName":"吴狄峰","id":"c517ee8f-2280-40a4-98b9-2676fa5e2fbf","originalAuthorName":"吴狄峰"},{"authorName":"程树森","id":"fa1dbe7b-0fd0-4162-b957-44fa140c117e","originalAuthorName":"程树森"},{"authorName":"潘宏伟","id":"1cc0eb07-729f-400d-8082-ebab27a65bc6","originalAuthorName":"潘宏伟"}],"categoryName":"|","doi":"","fpage":"8","id":"af9fddda-94c0-4190-834c-3506e7d10c2c","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"6612650d-cbee-44a2-acd3-538f4af43797","keyword":"高炉;薄型铜冷却壁;热态试验","originalKeyword":"高炉;薄型铜冷却壁;热态试验"}],"language":"zh","publisherId":"1001-0963_2008_4_13","title":"薄 型 铜 冷 却 壁 的 热 性 能","volume":"20","year":"2008"},{"abstractinfo":"为了对厚壁型钢管的冷弯工艺改进、性能分析、结构强度设计和数值模拟结果的验证提供重要依据,进行了冷弯厚壁钢管上截取的平板件、弯角件、母材和相应方、矩形截面短柱的力学性能试验研究,获得了短柱全截面屈服强度相对于母材强度的提高值.分别运用北美等国厚壁冷弯型钢规范、国内薄壁冷弯型钢规范以及相关文献中的修正规范,对我国厚壁冷弯方矩形型钢管全截面强度进行设计和对比分析.结果表明:因冷弯工艺不同,国外公式计算的结果高于国内短柱实测值,国内厚壁冷弯型钢的强度设计不能照搬现有的国外厚壁冷弯型钢设计规范;国内薄壁公式能否适用要视型钢的冷作硬化效应程度决定;原料的强屈比和冷弯应变程度越大,则冷作硬化效应越大;焊接热使板件受到低温\"退火\"的作用不可忽略,其常常导致竖直配辊冷弯厚壁矩形型钢时,两竖直侧平板件强度低于母材.","authors":[{"authorName":"胡盛德","id":"1676a5d1-0178-4f1c-abf6-c4b55176a936","originalAuthorName":"胡盛德"},{"authorName":"李立新","id":"5b0ac132-5acf-4262-9d52-2175aab4905f","originalAuthorName":"李立新"},{"authorName":"周家林","id":"6f2fa53d-21c9-4986-b6ca-94dbdb6f60e4","originalAuthorName":"周家林"},{"authorName":"张恒","id":"d908d0cd-d439-4670-b4f4-df7b67b4ef8c","originalAuthorName":"张恒"},{"authorName":"黄宁","id":"7a2a4cfb-7a43-4eba-af4a-1b8a1ebb00a1","originalAuthorName":"黄宁"}],"doi":"","fpage":"76","id":"162ba7d8-204b-4787-af6b-1ef77d019453","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"f3b55d49-df40-40ee-968f-a28b9c33b125","keyword":"厚壁方矩形管","originalKeyword":"厚壁方矩形管"},{"id":"0690889b-1dda-493f-922a-74436c42e87a","keyword":"冷弯成型","originalKeyword":"冷弯成型"},{"id":"a9eb7d21-2b1f-4e65-b442-6a178cef8644","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"a1eb67ae-c46f-44a1-bc9c-90a1600e106c","keyword":"冷作硬化效应","originalKeyword":"冷作硬化效应"},{"id":"6403a007-e773-4e19-b789-1dfe69612e37","keyword":"结构强度设计","originalKeyword":"结构强度设计"}],"language":"zh","publisherId":"clkxygc201001018","title":"厚壁方矩形管冷弯效应对比分析","volume":"28","year":"2010"},{"abstractinfo":"采用有限元法,对热壁CVD法SiCGe合金生长炉中加热组件的感应加热和温度分布进行了研究.分析了感应线圈匝数和石墨衬托的厚度对磁矢势和温度分布的影响,获取了感应线圈数越多感应生成焦耳热越大且越均匀的结论,得出了随石墨厚度的增加升温速率而增加,相反轴向温度均匀性而变差的设计准则.模拟结果表明选取16匝线圈和10mm左右的石墨壁厚为优化的设计参数.","authors":[{"authorName":"蒲红斌","id":"75feb885-e73b-4b93-80f7-49fd3c0c3e41","originalAuthorName":"蒲红斌"},{"authorName":"陈治明","id":"da501114-72fc-403a-ac22-6c1c24c7bdea","originalAuthorName":"陈治明"},{"authorName":"李留臣","id":"dba14320-a03d-4ea1-a01a-4ddc5d1ca372","originalAuthorName":"李留臣"},{"authorName":"封先锋","id":"e2f0ce72-3283-41d3-8516-2a6ca15e117c","originalAuthorName":"封先锋"},{"authorName":"张群社","id":"51be045c-d5e2-4e51-acfe-7b2a1fd04b29","originalAuthorName":"张群社"},{"authorName":"沃立民","id":"576a6b1a-c169-4b89-8920-34948e840cd5","originalAuthorName":"沃立民"},{"authorName":"黄媛媛","id":"654f12a0-54c2-43f0-89df-c929f07902ed","originalAuthorName":"黄媛媛"}],"doi":"10.3969/j.issn.1000-985X.2004.05.004","fpage":"712","id":"a1d2e531-7b5b-4bfe-8c64-b55ee7139bcd","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"a19cb4ba-213d-40a0-80db-4fd31c1e1930","keyword":"SiCGe","originalKeyword":"SiCGe"},{"id":"7d59446a-f8e2-4ab5-83a9-656f0b0cb4d3","keyword":"热壁CVD","originalKeyword":"热壁CVD"},{"id":"308ce551-34fc-4872-a577-cf499794e1c9","keyword":"感应加热","originalKeyword":"感应加热"},{"id":"8547ba1e-aa32-4c58-97a3-dce6df6d88b0","keyword":"温度场","originalKeyword":"温度场"},{"id":"ef7ca402-1296-4365-bd72-0fee27996797","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"rgjtxb98200405004","title":"用热壁CVD法在SiC衬底上生长SiCGe合金的热场分析与设计","volume":"33","year":"2004"},{"abstractinfo":"使用溶胶凝胶法制备了Fe/Mo/MgO催化剂,用化学气相沉积法在1000℃下催化裂解甲烷,制备了高质量的单壁纳米碳管.用SEM、TEM、HRTEM、TGA和Raman等方法对制备的纳米碳管粗产品进行了表征.结果表明:该产物确为单壁纳米碳管,单壁纳米碳管直径十分均一,在0.86~0.90nm之间,且其形态基本上都是以束状存在;本方法所制得粗产物中单壁碳管的含量在30%以上.","authors":[{"authorName":"李昱","id":"23b21aa9-a3ed-4cd0-a4a3-41c47c18b8a3","originalAuthorName":"李昱"},{"authorName":"张孝彬","id":"2e2f2814-e780-4c8e-83ce-4e903291c6cd","originalAuthorName":"张孝彬"},{"authorName":"沈利华","id":"d1c72bba-28e1-44fd-95ef-9940d68b4304","originalAuthorName":"沈利华"},{"authorName":"徐军明","id":"3e368b4d-1e27-46ce-a8c0-24a3c646a6c5","originalAuthorName":"徐军明"},{"authorName":"陈飞","id":"8f6034ac-a903-4d00-82c7-c1905308f66a","originalAuthorName":"陈飞"},{"authorName":"孔凡志","id":"56bed77e-3e63-4115-bc01-05d3a37b1443","originalAuthorName":"孔凡志"},{"authorName":"陶新永","id":"a8ee4a19-f5a6-43aa-bbf6-8b4b1c4ce72c","originalAuthorName":"陶新永"},{"authorName":"刘芙","id":"be1f7f6e-2b87-48fc-b560-5996ae34f199","originalAuthorName":"刘芙"},{"authorName":"涂江平","id":"6585245e-95bc-4e70-9a2a-21d9c47bf605","originalAuthorName":"涂江平"},{"authorName":"陈长聘","id":"bb113d15-b027-4802-82e3-5d255a0e09c0","originalAuthorName":"陈长聘"}],"doi":"10.3969/j.issn.1673-2812.2004.01.007","fpage":"24","id":"7cbcae6a-dc59-447b-a70d-3ceb4793db96","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7080cf29-4e4c-46ea-b3c5-1c665780bbce","keyword":"单壁纳米碳管","originalKeyword":"单壁纳米碳管"},{"id":"8df23784-8158-40e7-9822-c89cac4be822","keyword":"化学气相沉积法","originalKeyword":"化学气相沉积法"},{"id":"95dcd807-eeb1-4880-8530-fab00ca81826","keyword":"甲烷","originalKeyword":"甲烷"}],"language":"zh","publisherId":"clkxygc200401007","title":"高质量小直径单壁纳米碳管的CVD法制备","volume":"22","year":"2004"},{"abstractinfo":"基于负载法Fe-MgO体系催化剂研究了化学气相沉积(CVD)法在流化床反应器中反应温度和时间对单壁碳纳米管(SWCNTs)生长的影响.通过气相色谱对尾气进行实时在线分析,获得了CH4在反应过程中的转化率随时间的变化规律.并对不同反应温度和反应时间所获产品进行了TEM、Raman和TGA等表征.结果表明,900℃是最佳的反应温度,反应温度过低会降低催化剂活性,反应温度过高则容易使催化剂过快失活.在合适的反应温度下,反应前10min催化剂的平均活性较高,能够得到较高质量的SWCNTs,10min后催化剂基本失活.","authors":[{"authorName":"张群峰","id":"df4b56d2-1cbb-4fa5-a9c3-d14d01eb9e02","originalAuthorName":"张群峰"},{"authorName":"余皓","id":"a603497c-3b99-4a0f-857d-02ba54c8e161","originalAuthorName":"余皓"},{"authorName":"罗国华","id":"e237e1de-f1a4-459d-a1da-73a8d00bcd14","originalAuthorName":"罗国华"},{"authorName":"骞伟中","id":"ecbacde4-797b-49a2-b779-c036c8ace652","originalAuthorName":"骞伟中"},{"authorName":"魏飞","id":"4e40e9cb-1a54-44de-ba58-c21608a8ad00","originalAuthorName":"魏飞"}],"doi":"10.3969/j.issn.1007-8827.2006.04.011","fpage":"349","id":"d48d687b-5315-4589-909d-0ed0f02e1f52","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"89bd0a69-9189-4f0a-9e5a-5f349021919d","keyword":"单壁碳纳米管","originalKeyword":"单壁碳纳米管"},{"id":"07e8f41d-a000-4ecc-bed3-94afec4733d9","keyword":"流化床","originalKeyword":"流化床"},{"id":"ab4b280a-7991-437a-8e46-01ae433d5bff","keyword":"CVD法","originalKeyword":"CVD法"},{"id":"0673dab9-3377-4126-a996-d692fbadcdd4","keyword":"反应时间","originalKeyword":"反应时间"},{"id":"31b235c6-1e2f-4c9a-9de3-de42921c56b2","keyword":"反应温度","originalKeyword":"反应温度"}],"language":"zh","publisherId":"xxtcl200604011","title":"流化床CVD法制备单壁碳纳米管:反应温度与时间的影响","volume":"21","year":"2006"},{"abstractinfo":"以Fe/SiO2粉状物作催化剂用化学沉积法裂解乙炔制备出无序多壁碳纳米管,用TEM、XRD和DSC-TGA分析了反应温度对碳纳米管的影响.实验结果表明,反应温度分别为600、700和800℃时,制备出碳纳米管的直径相应为12~20、15~25和33~66nm,即碳纳米管的直径随着反应温度的升高而增大.同时随着反应温度的提高碳纳米管的石墨化程度也有明显的提高.因此碳纳米管的直径、石墨化程度等结构特性可以用反应温度来加以控制.","authors":[{"authorName":"姚运金","id":"0029991a-4f63-40e7-9cb4-20c559b707af","originalAuthorName":"姚运金"},{"authorName":"张素平","id":"c483a65d-cd70-4fc6-ae74-c26b08e89681","originalAuthorName":"张素平"},{"authorName":"颜涌捷","id":"c25408a8-7d86-4cd0-935b-e39ed008238e","originalAuthorName":"颜涌捷"}],"doi":"","fpage":"900","id":"27c378c1-a845-4306-8c07-e88649c66dc2","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"cac001d0-2cc0-45a1-8909-e8691e5e5fa1","keyword":"气相沉积法","originalKeyword":"气相沉积法"},{"id":"79adc88e-189d-40e1-8982-36f766ad98e7","keyword":"反应温度","originalKeyword":"反应温度"},{"id":"a90d4a47-2c4f-4485-b569-3c49076ad0f0","keyword":"多壁碳纳米管","originalKeyword":"多壁碳纳米管"},{"id":"f3840c41-1ea5-4944-96f1-9906a9f6d50c","keyword":"结构","originalKeyword":"结构"}],"language":"zh","publisherId":"gncl200506029","title":"温度对CVD法制备多壁碳纳米管的影响","volume":"36","year":"2005"},{"abstractinfo":"通过X射线衍射方法,测量冷弯厚壁方管弯角的不同深度、不同部位的残余应力,研究残余应力在弯角的不同深度、不同部位的分布规律.结果表明:方管外表面的横向、纵向残余应力都是拉应力,沿着厚度方向,两种应力皆呈下降趋势,由正变负,在内表面为压应力;沿厚度方向,方管的残余应力呈非线性分布.","authors":[{"authorName":"李立新","id":"97edfdcd-deaa-40c4-87aa-8e47503da5c9","originalAuthorName":"李立新"},{"authorName":"苏雨萌","id":"1d9be168-9853-4839-a483-ea58c2d1fbcd","originalAuthorName":"苏雨萌"},{"authorName":"李书帖","id":"e48da51d-b4fe-44a0-9618-ce191cdab40f","originalAuthorName":"李书帖"},{"authorName":"李彬","id":"f07dc3ed-b6f4-42f9-bd26-a05f722648de","originalAuthorName":"李彬"},{"authorName":"袁翔","id":"b8124d12-233a-44d8-ae8f-431467edfdda","originalAuthorName":"袁翔"},{"authorName":"皮大光","id":"84f705dd-ed02-4c01-808d-ed63a60b8905","originalAuthorName":"皮大光"}],"doi":"","fpage":"55","id":"aff52c19-aaca-44aa-b340-6274d9c43229","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"0b927678-d92a-4395-9bea-23a2460983a2","keyword":"残余应力","originalKeyword":"残余应力"},{"id":"53c29b29-0e0d-4dfd-a2a1-32eb2d57b796","keyword":"冷弯","originalKeyword":"冷弯"},{"id":"a7cce161-d16a-45cd-a718-f31678e0789c","keyword":"厚壁","originalKeyword":"厚壁"},{"id":"afa2b586-6527-43de-86e1-e64bf345eaec","keyword":"方管","originalKeyword":"方管"}],"language":"zh","publisherId":"shjs201404014","title":"冷弯厚壁方管残余应力沿截面分布规律的研究","volume":"36","year":"2014"},{"abstractinfo":"在热壁LPCVD系统中利用间隔生长法在6H-SiC衬底上淀积Si薄膜,采用XRD、SEM、激光共聚焦显微镜和拉曼光谱对Si薄膜的表面形貌和结构进行表征.结果表明:相比于连续生长法,用间隔法制备Si薄膜的速率有所降低,但表面粗糙度有所减小,同时晶粒尺寸也增大.XRD测试结果表明:间隔法可以控制薄膜生长的择优取向.Raman光谱测试结果表明:采用间隔法且断源时间控制在30 s时,生长温度900℃,H2∶ SiH4 =400∶20 sccm时生长Si薄膜的Raman半峰宽最小.","authors":[{"authorName":"高战军","id":"e228e270-b960-4d51-9bd4-6147e126cda3","originalAuthorName":"高战军"},{"authorName":"陈治明","id":"566a00ac-476a-49f2-94f9-1bb053b5891c","originalAuthorName":"陈治明"},{"authorName":"李连碧","id":"ab10c7d7-1212-46cd-9431-082cfc4d0fbe","originalAuthorName":"李连碧"},{"authorName":"赵萌","id":"67a1120d-d056-42de-a033-0c31ddcbb7af","originalAuthorName":"赵萌"},{"authorName":"黄磊","id":"d37537fb-9d7b-4698-9e4e-a831db91fdc9","originalAuthorName":"黄磊"}],"doi":"","fpage":"1965","id":"2f845a6b-258e-446a-aab9-273c04fc6926","issue":"8","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"94a9f1b4-9d2a-4508-b02a-a1eefbb034dc","keyword":"热壁LPCVD","originalKeyword":"热壁LPCVD"},{"id":"6167ad23-3c14-4882-bcb5-57174e6daebc","keyword":"多晶Si薄膜","originalKeyword":"多晶Si薄膜"},{"id":"c5655fd6-f5ee-41f1-9aeb-4ccfff7ee920","keyword":"择优取向","originalKeyword":"择优取向"},{"id":"beee0628-e30e-4e84-bf60-63e339fa8164","keyword":"表面粗糙度","originalKeyword":"表面粗糙度"}],"language":"zh","publisherId":"rgjtxb98201408015","title":"6H-SiC衬底上多晶Si薄膜热壁CVD间隔生长与结构表征","volume":"43","year":"2014"}],"totalpage":879,"totalrecord":8781}