{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用装置化学气相沉积(CVD)制备纳米碳管,以乙炔(C2H2)为碳源气体,研究了2种催化剂(镍、铁)、3种基底、3种稀释气体、3种稀释气体和碳源气体流量比以及温度对CVD法生长纳米碳管的影响,用SEM和TEM分析了产物的形貌.结果表明,镍催化活性高于铁的催化活性.与石墨和纯铁基底相比,以单晶硅基底生长的纳米碳管纯度更高,管壁更干净.3种稀释气体和碳源气体流量比(2/1、10/1、19/1)中,以流量比为10/1时生长纳米碳管效果最好.3种稀释气体(氨气、氢气、氮气)中,以氨气最好.随着生长温度的升高,催化剂的活性提高,有利于碳的有序排列,但生长的碳纳米管直径增大.当基底为单晶硅、催化剂镍膜厚度为20nm、氨气气氛、生长温度为850℃时,得到了近似定向生长的纳米碳管.","authors":[{"authorName":"韩栋","id":"8720327c-9f62-4cf5-83f8-a33b5af102f7","originalAuthorName":"韩栋"},{"authorName":"乔生儒","id":"01797ca5-1544-412a-b3d7-e4270737ab78","originalAuthorName":"乔生儒"},{"authorName":"邓波","id":"aba141a0-09fe-44f1-9b67-942a86ce36c2","originalAuthorName":"邓波"},{"authorName":"李玫","id":"a9e209c9-a1f3-4564-90ff-3db029c277af","originalAuthorName":"李玫"}],"doi":"","fpage":"78","id":"1ac470f8-9148-43e5-bc5c-e292c314a45e","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"01b7beb8-c6b8-4549-83db-e6969b14b190","keyword":"CVD","originalKeyword":"冷壁CVD"},{"id":"c4b31802-3a88-4838-a5b8-0126bf97c5b9","keyword":"纳米碳管","originalKeyword":"纳米碳管"},{"id":"c19da5ec-f953-4386-8ff5-defbfa8a94b4","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"d7200a4d-1a37-4073-a28d-ac9c6f7441db","keyword":"基底","originalKeyword":"基底"},{"id":"98a86aed-52cd-4a06-9320-4e52eac51aa9","keyword":"稀释气体","originalKeyword":"稀释气体"},{"id":"65fc10d0-c028-4b2d-b62f-0176af8fc235","keyword":"流量比","originalKeyword":"流量比"},{"id":"24ce76bb-5a46-4271-adef-ce5cb08336ff","keyword":"温度","originalKeyword":"温度"}],"language":"zh","publisherId":"cldb2005z2024","title":"装置化学气相沉积制备纳米碳管","volume":"19","year":"2005"},{"abstractinfo":"选择合适的沉积室内壁材料是热化学气相沉积制备Pt薄膜过程中降低前驱体在沉积室内壁上大量消耗,进而保证沉积室内Pt前驱体分压的关键.本研究对比了Pt在镍基高温合金,备选沉积室内壁材料——有氧化层的Cu以及紫铜表面的沉积的难易程度,发现在有氧化层的Cu的表面Pt薄膜很难沉积,因此当镍基高温合金为沉积基体时有氧化层的Cu可以作为热CVD的沉积室内壁衬底材料,但是只能一次性使用.","authors":[{"authorName":"李颖","id":"66dfe93d-d091-4690-a8aa-ca95272b7238","originalAuthorName":"李颖"},{"authorName":"胡劲","id":"7f6c41c8-2695-4c42-8099-6efbd80e1122","originalAuthorName":"胡劲"},{"authorName":"武晋文","id":"007a2c67-c098-42dd-b506-2deeb161fd9a","originalAuthorName":"武晋文"},{"authorName":"王玉天","id":"3eac9e5d-23dd-4d04-9e47-da07b139f445","originalAuthorName":"王玉天"},{"authorName":"于晓东","id":"179c68b2-8c39-460a-b674-eab3c5a85062","originalAuthorName":"于晓东"},{"authorName":"谭成文","id":"c4e31caa-8d50-4d87-aa6a-c6edc5d0e797","originalAuthorName":"谭成文"}],"doi":"","fpage":"445","id":"9040f202-d972-4984-80d9-f051b48bba59","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"635013b5-ef91-4e2a-afa7-e069b938005b","keyword":"Pt薄膜","originalKeyword":"Pt薄膜"},{"id":"a84b1100-fd36-4052-8a8f-7bcae9ab968b","keyword":"热CVD","originalKeyword":"热壁CVD"},{"id":"b375bb0e-3c40-4f4b-996b-0ffb41baf29d","keyword":"沉积室内壁材料","originalKeyword":"沉积室内壁材料"}],"language":"zh","publisherId":"xyjsclygc201602035","title":"热CVD制备铂薄膜的沉积室内壁材料选择研究","volume":"45","year":"2016"},{"abstractinfo":"为了降低高炉铜冷却的造价,开发了一种厚度为90 mm的薄型铜冷却。通过热态试验测量了高温下冷却的温度分布和冷面应变分布,通过数值模拟计算了冷却的温度场和应力应变场。热态试验和数值模拟结果符合较好。研究结果表明,薄型铜冷却能承受的最大热负荷为220 kW/m2,在高炉炉况下的基体温度以及由此产生的热应力都不足以使其破坏,满足长寿高炉的要求。","authors":[{"authorName":"吴狄峰","id":"c517ee8f-2280-40a4-98b9-2676fa5e2fbf","originalAuthorName":"吴狄峰"},{"authorName":"程树森","id":"fa1dbe7b-0fd0-4162-b957-44fa140c117e","originalAuthorName":"程树森"},{"authorName":"潘宏伟","id":"1cc0eb07-729f-400d-8082-ebab27a65bc6","originalAuthorName":"潘宏伟"}],"categoryName":"|","doi":"","fpage":"8","id":"af9fddda-94c0-4190-834c-3506e7d10c2c","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"6612650d-cbee-44a2-acd3-538f4af43797","keyword":"高炉;薄型铜冷却;热态试验","originalKeyword":"高炉;薄型铜冷却壁;热态试验"}],"language":"zh","publisherId":"1001-0963_2008_4_13","title":"薄 型 铜 的 热 性 能","volume":"20","year":"2008"},{"abstractinfo":"为了对厚型钢管的弯工艺改进、性能分析、结构强度设计和数值模拟结果的验证提供重要依据,进行了弯厚钢管上截取的平板件、弯角件、母材和相应方、矩形截面短柱的力学性能试验研究,获得了短柱全截面屈服强度相对于母材强度的提高值.分别运用北美等国厚弯型钢规范、国内薄壁弯型钢规范以及相关文献中的修正规范,对我国厚弯方矩形型钢管全截面强度进行设计和对比分析.结果表明:因弯工艺不同,国外公式计算的结果高于国内短柱实测值,国内厚弯型钢的强度设计不能照搬现有的国外厚弯型钢设计规范;国内薄壁公式能否适用要视型钢的冷作硬化效应程度决定;原料的强屈比和弯应变程度越大,则冷作硬化效应越大;焊接热使板件受到低温\"退火\"的作用不可忽略,其常常导致竖直配辊弯厚矩形型钢时,两竖直侧平板件强度低于母材.","authors":[{"authorName":"胡盛德","id":"1676a5d1-0178-4f1c-abf6-c4b55176a936","originalAuthorName":"胡盛德"},{"authorName":"李立新","id":"5b0ac132-5acf-4262-9d52-2175aab4905f","originalAuthorName":"李立新"},{"authorName":"周家林","id":"6f2fa53d-21c9-4986-b6ca-94dbdb6f60e4","originalAuthorName":"周家林"},{"authorName":"张恒","id":"d908d0cd-d439-4670-b4f4-df7b67b4ef8c","originalAuthorName":"张恒"},{"authorName":"黄宁","id":"7a2a4cfb-7a43-4eba-af4a-1b8a1ebb00a1","originalAuthorName":"黄宁"}],"doi":"","fpage":"76","id":"162ba7d8-204b-4787-af6b-1ef77d019453","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"f3b55d49-df40-40ee-968f-a28b9c33b125","keyword":"厚方矩形管","originalKeyword":"厚壁方矩形管"},{"id":"0690889b-1dda-493f-922a-74436c42e87a","keyword":"弯成型","originalKeyword":"冷弯成型"},{"id":"a9eb7d21-2b1f-4e65-b442-6a178cef8644","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"a1eb67ae-c46f-44a1-bc9c-90a1600e106c","keyword":"冷作硬化效应","originalKeyword":"冷作硬化效应"},{"id":"6403a007-e773-4e19-b789-1dfe69612e37","keyword":"结构强度设计","originalKeyword":"结构强度设计"}],"language":"zh","publisherId":"clkxygc201001018","title":"厚方矩形管弯效应对比分析","volume":"28","year":"2010"},{"abstractinfo":"采用有限元法,对热CVD法SiCGe合金生长炉中加热组件的感应加热和温度分布进行了研究.分析了感应线圈匝数和石墨衬托的厚度对磁矢势和温度分布的影响,获取了感应线圈数越多感应生成焦耳热越大且越均匀的结论,得出了随石墨厚度的增加升温速率而增加,相反轴向温度均匀性而变差的设计准则.模拟结果表明选取16匝线圈和10mm左右的石墨厚为优化的设计参数.","authors":[{"authorName":"蒲红斌","id":"75feb885-e73b-4b93-80f7-49fd3c0c3e41","originalAuthorName":"蒲红斌"},{"authorName":"陈治明","id":"da501114-72fc-403a-ac22-6c1c24c7bdea","originalAuthorName":"陈治明"},{"authorName":"李留臣","id":"dba14320-a03d-4ea1-a01a-4ddc5d1ca372","originalAuthorName":"李留臣"},{"authorName":"封先锋","id":"e2f0ce72-3283-41d3-8516-2a6ca15e117c","originalAuthorName":"封先锋"},{"authorName":"张群社","id":"51be045c-d5e2-4e51-acfe-7b2a1fd04b29","originalAuthorName":"张群社"},{"authorName":"沃立民","id":"576a6b1a-c169-4b89-8920-34948e840cd5","originalAuthorName":"沃立民"},{"authorName":"黄媛媛","id":"654f12a0-54c2-43f0-89df-c929f07902ed","originalAuthorName":"黄媛媛"}],"doi":"10.3969/j.issn.1000-985X.2004.05.004","fpage":"712","id":"a1d2e531-7b5b-4bfe-8c64-b55ee7139bcd","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"a19cb4ba-213d-40a0-80db-4fd31c1e1930","keyword":"SiCGe","originalKeyword":"SiCGe"},{"id":"7d59446a-f8e2-4ab5-83a9-656f0b0cb4d3","keyword":"热CVD","originalKeyword":"热壁CVD"},{"id":"308ce551-34fc-4872-a577-cf499794e1c9","keyword":"感应加热","originalKeyword":"感应加热"},{"id":"8547ba1e-aa32-4c58-97a3-dce6df6d88b0","keyword":"温度场","originalKeyword":"温度场"},{"id":"ef7ca402-1296-4365-bd72-0fee27996797","keyword":"有限元","originalKeyword":"有限元"}],"language":"zh","publisherId":"rgjtxb98200405004","title":"用热CVD法在SiC衬底上生长SiCGe合金的热场分析与设计","volume":"33","year":"2004"},{"abstractinfo":"使用溶胶凝胶法制备了Fe/Mo/MgO催化剂,用化学气相沉积法在1000℃下催化裂解甲烷,制备了高质量的单纳米碳管.用SEM、TEM、HRTEM、TGA和Raman等方法对制备的纳米碳管粗产品进行了表征.结果表明:该产物确为单纳米碳管,单纳米碳管直径十分均一,在0.86~0.90nm之间,且其形态基本上都是以束状存在;本方法所制得粗产物中单碳管的含量在30%以上.","authors":[{"authorName":"李昱","id":"23b21aa9-a3ed-4cd0-a4a3-41c47c18b8a3","originalAuthorName":"李昱"},{"authorName":"张孝彬","id":"2e2f2814-e780-4c8e-83ce-4e903291c6cd","originalAuthorName":"张孝彬"},{"authorName":"沈利华","id":"d1c72bba-28e1-44fd-95ef-9940d68b4304","originalAuthorName":"沈利华"},{"authorName":"徐军明","id":"3e368b4d-1e27-46ce-a8c0-24a3c646a6c5","originalAuthorName":"徐军明"},{"authorName":"陈飞","id":"8f6034ac-a903-4d00-82c7-c1905308f66a","originalAuthorName":"陈飞"},{"authorName":"孔凡志","id":"56bed77e-3e63-4115-bc01-05d3a37b1443","originalAuthorName":"孔凡志"},{"authorName":"陶新永","id":"a8ee4a19-f5a6-43aa-bbf6-8b4b1c4ce72c","originalAuthorName":"陶新永"},{"authorName":"刘芙","id":"be1f7f6e-2b87-48fc-b560-5996ae34f199","originalAuthorName":"刘芙"},{"authorName":"涂江平","id":"6585245e-95bc-4e70-9a2a-21d9c47bf605","originalAuthorName":"涂江平"},{"authorName":"陈长聘","id":"bb113d15-b027-4802-82e3-5d255a0e09c0","originalAuthorName":"陈长聘"}],"doi":"10.3969/j.issn.1673-2812.2004.01.007","fpage":"24","id":"7cbcae6a-dc59-447b-a70d-3ceb4793db96","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7080cf29-4e4c-46ea-b3c5-1c665780bbce","keyword":"单纳米碳管","originalKeyword":"单壁纳米碳管"},{"id":"8df23784-8158-40e7-9822-c89cac4be822","keyword":"化学气相沉积法","originalKeyword":"化学气相沉积法"},{"id":"95dcd807-eeb1-4880-8530-fab00ca81826","keyword":"甲烷","originalKeyword":"甲烷"}],"language":"zh","publisherId":"clkxygc200401007","title":"高质量小直径单纳米碳管的CVD法制备","volume":"22","year":"2004"},{"abstractinfo":"基于负载法Fe-MgO体系催化剂研究了化学气相沉积(CVD)法在流化床反应器中反应温度和时间对单碳纳米管(SWCNTs)生长的影响.通过气相色谱对尾气进行实时在线分析,获得了CH4在反应过程中的转化率随时间的变化规律.并对不同反应温度和反应时间所获产品进行了TEM、Raman和TGA等表征.结果表明,900℃是最佳的反应温度,反应温度过低会降低催化剂活性,反应温度过高则容易使催化剂过快失活.在合适的反应温度下,反应前10min催化剂的平均活性较高,能够得到较高质量的SWCNTs,10min后催化剂基本失活.","authors":[{"authorName":"张群峰","id":"df4b56d2-1cbb-4fa5-a9c3-d14d01eb9e02","originalAuthorName":"张群峰"},{"authorName":"余皓","id":"a603497c-3b99-4a0f-857d-02ba54c8e161","originalAuthorName":"余皓"},{"authorName":"罗国华","id":"e237e1de-f1a4-459d-a1da-73a8d00bcd14","originalAuthorName":"罗国华"},{"authorName":"骞伟中","id":"ecbacde4-797b-49a2-b779-c036c8ace652","originalAuthorName":"骞伟中"},{"authorName":"魏飞","id":"4e40e9cb-1a54-44de-ba58-c21608a8ad00","originalAuthorName":"魏飞"}],"doi":"10.3969/j.issn.1007-8827.2006.04.011","fpage":"349","id":"d48d687b-5315-4589-909d-0ed0f02e1f52","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"89bd0a69-9189-4f0a-9e5a-5f349021919d","keyword":"单碳纳米管","originalKeyword":"单壁碳纳米管"},{"id":"07e8f41d-a000-4ecc-bed3-94afec4733d9","keyword":"流化床","originalKeyword":"流化床"},{"id":"ab4b280a-7991-437a-8e46-01ae433d5bff","keyword":"CVD法","originalKeyword":"CVD法"},{"id":"0673dab9-3377-4126-a996-d692fbadcdd4","keyword":"反应时间","originalKeyword":"反应时间"},{"id":"31b235c6-1e2f-4c9a-9de3-de42921c56b2","keyword":"反应温度","originalKeyword":"反应温度"}],"language":"zh","publisherId":"xxtcl200604011","title":"流化床CVD法制备单碳纳米管:反应温度与时间的影响","volume":"21","year":"2006"},{"abstractinfo":"以Fe/SiO2粉状物作催化剂用化学沉积法裂解乙炔制备出无序多碳纳米管,用TEM、XRD和DSC-TGA分析了反应温度对碳纳米管的影响.实验结果表明,反应温度分别为600、700和800℃时,制备出碳纳米管的直径相应为12~20、15~25和33~66nm,即碳纳米管的直径随着反应温度的升高而增大.同时随着反应温度的提高碳纳米管的石墨化程度也有明显的提高.因此碳纳米管的直径、石墨化程度等结构特性可以用反应温度来加以控制.","authors":[{"authorName":"姚运金","id":"0029991a-4f63-40e7-9cb4-20c559b707af","originalAuthorName":"姚运金"},{"authorName":"张素平","id":"c483a65d-cd70-4fc6-ae74-c26b08e89681","originalAuthorName":"张素平"},{"authorName":"颜涌捷","id":"c25408a8-7d86-4cd0-935b-e39ed008238e","originalAuthorName":"颜涌捷"}],"doi":"","fpage":"900","id":"27c378c1-a845-4306-8c07-e88649c66dc2","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"cac001d0-2cc0-45a1-8909-e8691e5e5fa1","keyword":"气相沉积法","originalKeyword":"气相沉积法"},{"id":"79adc88e-189d-40e1-8982-36f766ad98e7","keyword":"反应温度","originalKeyword":"反应温度"},{"id":"a90d4a47-2c4f-4485-b569-3c49076ad0f0","keyword":"多碳纳米管","originalKeyword":"多壁碳纳米管"},{"id":"f3840c41-1ea5-4944-96f1-9906a9f6d50c","keyword":"结构","originalKeyword":"结构"}],"language":"zh","publisherId":"gncl200506029","title":"温度对CVD法制备多碳纳米管的影响","volume":"36","year":"2005"},{"abstractinfo":"通过X射线衍射方法,测量弯厚方管弯角的不同深度、不同部位的残余应力,研究残余应力在弯角的不同深度、不同部位的分布规律.结果表明:方管外表面的横向、纵向残余应力都是拉应力,沿着厚度方向,两种应力皆呈下降趋势,由正变负,在内表面为压应力;沿厚度方向,方管的残余应力呈非线性分布.","authors":[{"authorName":"李立新","id":"97edfdcd-deaa-40c4-87aa-8e47503da5c9","originalAuthorName":"李立新"},{"authorName":"苏雨萌","id":"1d9be168-9853-4839-a483-ea58c2d1fbcd","originalAuthorName":"苏雨萌"},{"authorName":"李书帖","id":"e48da51d-b4fe-44a0-9618-ce191cdab40f","originalAuthorName":"李书帖"},{"authorName":"李彬","id":"f07dc3ed-b6f4-42f9-bd26-a05f722648de","originalAuthorName":"李彬"},{"authorName":"袁翔","id":"b8124d12-233a-44d8-ae8f-431467edfdda","originalAuthorName":"袁翔"},{"authorName":"皮大光","id":"84f705dd-ed02-4c01-808d-ed63a60b8905","originalAuthorName":"皮大光"}],"doi":"","fpage":"55","id":"aff52c19-aaca-44aa-b340-6274d9c43229","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"0b927678-d92a-4395-9bea-23a2460983a2","keyword":"残余应力","originalKeyword":"残余应力"},{"id":"53c29b29-0e0d-4dfd-a2a1-32eb2d57b796","keyword":"弯","originalKeyword":"冷弯"},{"id":"a7cce161-d16a-45cd-a718-f31678e0789c","keyword":"厚","originalKeyword":"厚壁"},{"id":"afa2b586-6527-43de-86e1-e64bf345eaec","keyword":"方管","originalKeyword":"方管"}],"language":"zh","publisherId":"shjs201404014","title":"弯厚方管残余应力沿截面分布规律的研究","volume":"36","year":"2014"},{"abstractinfo":"在热LPCVD系统中利用间隔生长法在6H-SiC衬底上淀积Si薄膜,采用XRD、SEM、激光共聚焦显微镜和拉曼光谱对Si薄膜的表面形貌和结构进行表征.结果表明:相比于连续生长法,用间隔法制备Si薄膜的速率有所降低,但表面粗糙度有所减小,同时晶粒尺寸也增大.XRD测试结果表明:间隔法可以控制薄膜生长的择优取向.Raman光谱测试结果表明:采用间隔法且断源时间控制在30 s时,生长温度900℃,H2∶ SiH4 =400∶20 sccm时生长Si薄膜的Raman半峰宽最小.","authors":[{"authorName":"高战军","id":"e228e270-b960-4d51-9bd4-6147e126cda3","originalAuthorName":"高战军"},{"authorName":"陈治明","id":"566a00ac-476a-49f2-94f9-1bb053b5891c","originalAuthorName":"陈治明"},{"authorName":"李连碧","id":"ab10c7d7-1212-46cd-9431-082cfc4d0fbe","originalAuthorName":"李连碧"},{"authorName":"赵萌","id":"67a1120d-d056-42de-a033-0c31ddcbb7af","originalAuthorName":"赵萌"},{"authorName":"黄磊","id":"d37537fb-9d7b-4698-9e4e-a831db91fdc9","originalAuthorName":"黄磊"}],"doi":"","fpage":"1965","id":"2f845a6b-258e-446a-aab9-273c04fc6926","issue":"8","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"94a9f1b4-9d2a-4508-b02a-a1eefbb034dc","keyword":"热LPCVD","originalKeyword":"热壁LPCVD"},{"id":"6167ad23-3c14-4882-bcb5-57174e6daebc","keyword":"多晶Si薄膜","originalKeyword":"多晶Si薄膜"},{"id":"c5655fd6-f5ee-41f1-9aeb-4ccfff7ee920","keyword":"择优取向","originalKeyword":"择优取向"},{"id":"beee0628-e30e-4e84-bf60-63e339fa8164","keyword":"表面粗糙度","originalKeyword":"表面粗糙度"}],"language":"zh","publisherId":"rgjtxb98201408015","title":"6H-SiC衬底上多晶Si薄膜热CVD间隔生长与结构表征","volume":"43","year":"2014"}],"totalpage":879,"totalrecord":8781}