欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(4)
  • 图书()
  • 专利()
  • 新闻()

海枣核CO2活化和磷酸活化制备活性炭及其结构、吸附性能

新型炭材料 doi:10.1016/S1872-5805(12)60020-1

由于具有很大的吸附容量,多孔炭材料是优良的吸附剂.笔者试图比较海枣核分别经CO2活化和磷酸活化所制活性炭的结构和吸附性能.活化过程和工艺条件对炭的物理化学性质影响较大,根据文献报道的结果选取了优化的工艺参数.基于氮气吸附等温线、SEM、FT-IR等分析结果,评估了活性炭的结构特征,吸附性能则由亚甲蓝吸附值表示.CO2活化得到了微孔活性炭,产率为44%、BET比表面积是666 m2·g-1;磷酸活化得到了产率为14.8%的中孔活性炭,BET比表面积为725 m2· g-1.CO2活化活性炭的平均孔径是1.51 nm,磷酸活化活性炭的则为2.91 nm.活性炭的亚甲蓝吸附等温线分别用Langmuir等温线和Freundlich等温线进行了验证,在优化工艺条件下制备的CO2活化炭和磷酸活化炭的亚甲蓝w单分子吸附容量分别为110 mg·g-1和345 mg·g-1.然而,磷酸活化产生的亚甲蓝吸附值最高达455 mg·g-1.

关键词: 活性炭 , 物理活化 , 化学活化 , Langmuir等温线 , Freundlich等温线

生物质活性炭微孔和中孔结构对CO2吸附性能的影响

宋涛 , 廖景明 , 肖军 , 沈来宏

新型炭材料 doi:10.1016/S1872-5805(15)60181-0

以玉米秸秆作为生物质活性炭的原材料,CO2作为活化介质,分别以KOH、HNO3和CH3 COOH作活化剂,在800℃下一步法制备出玉米秸秆活性炭,并针对部分样品分别使用KOH、HNO3和CH3 COOH进行化学活化。分别考察CO2活化时间、CO2活化剂浓度、化学活化种类及后续热处理工艺对样品吸附CO2的性能影响。结果表明,化学活化过程可拓展活性炭的空隙结构,显著提高其对CO2的吸附。在最优工艺下(4mol/L HNO3活化+100℃水浴加热1h+600℃热处理),活性炭的比表面积达639.8 m2/g,其CO2捕集效率为7.33%,高于市场商业用活性炭的6.55%。同时,考察活性炭微孔和中孔对CO2吸附的影响规律,并采用Bangham动力学模型探讨样品的吸附性能。

关键词: CO2吸附 , 活性炭 , 生物质 , 物理活化 , 化学活化

化学修饰炭黑在微生物燃料电池中的生物产电行为

彭新红 , 初喜章 , 刘玮 , 王生辉 , 邹一 , 王晓楠

催化学报 doi:10.1016/S1872-2067(15)60880-4

研究发现微生物燃料电池从启动到稳定运行的过程中往往存在一种现象,就是在高电流密度下,微生物燃料电池的输出电压会出现逆转,从而限制了微生物燃料电池的规模化应用,以及它在污废水处理、脱盐等方面的功能.
  前期研究发现,微生物燃料电池的性能逆转现象与阳极材料的电容性能有关.电极材料的电容越大,越有利于微生物燃料电池的产电性能稳定,换言之,阳极材料电容不足导致产电性能逆转.但是超级电容活性炭的制作工艺繁琐,成本高,且导电性弱,不能满足微生物燃料电池的应用需求.炭黑的导电能力强、化学稳定性高、成本低,但作为微生物燃料电池的阳极则产生产电性能逆转现象.
  化学修饰(如酸、碱活化或者添加具有赝电容性质的金属氧化物等)可以提高材料的电容性能.低温条件(80 oC)下,对低电容材料—炭黑进行HNO3和KOH的化学活化处理,并在此基础上,进一步用5%Fe3O4修饰,采用辊压工艺,以质量分数为60%的聚四氟乙烯乳液为粘结剂,制作微生物燃料电池的阳极,与空气阴极构建单室微生物燃料电池系统.采用傅里叶变换红外光谱(FTIR)、比表面积测试、材料表面pH和X射线能量分析光谱(EDX)等手段表征炭黑活化前后的物理、化学性质;接触角润湿性测试表征活化前后电极表面的亲疏水性.电化学循环伏安法测试活化前后,电极的电子存储能力.
  与蒸馏水的pH相比较,材料表面pH分析表明炭黑材料经化学活化处理后,其表面pH无明显变化; FTIR和EDX测试表明化学活化处理使得炭黑表面引入含O(N)官能团;吸附-脱附曲线分析表明化学活化后,炭黑的比表面积减小,微孔与介孔的体积比增加;接触角测试表明炭黑阳极活化处理后,电极表面亲水性增加;循环伏安测试证实,化学活化后的炭黑阳极电容得到0.1–0.8 F/cm2的增长.结合燃料电池的产电性能测试,发现只有当炭黑阳极电容不小于1.1 F/cm2时,微生物燃料电池的产电逆转现象才会消失.炭黑阳极的化学活化方法为微生物燃料电池的性能稳定提供了一种简便、低成本的方法.

关键词: 微生物燃料电池 , 化学活化 , 四氧化三铁 , 阳极电容 , 产电行为

橡胶木屑基活性炭-聚氨酯复合材料的制备及其微波吸收性能

Azizah Shaaban , Sian-Meng Se , Imran Mohd Ibrahim , Qumrul Ahsan

新型炭材料 doi:10.1016/S1872-5805(15)60182-2

采用 ZnCl2对橡胶木屑进行化学活化制备出活性炭。 ZnCl2与橡胶木屑的浸渍质量比为1.0-2.0,活化温度为500℃,时间为60 min。通过扫描电镜、X射线衍射和BET比表面分析仪探讨浸渍比例对活性炭孔结构的影响。结果表明,当浸渍比为1.5:1时,样品的比表面积和孔径分别为1301 m2/g 和0.37 cm3/g。通过化学发泡工艺将不同质量分数(1%,2%,3%,5%,8%)的活性炭填充至聚氨酯中制备出聚氨酯复合材料。在1-5 GHz频率范围内,复合材料吸收微波。随着活性炭含量增加,在1-3 GHz范围内,介电常数(ε’)和回波损耗增加。活性炭含量为8%时复合材料的介电常数达到最大值3.0。在1.8 GHz时,复合材料的回波损耗为10 dB。在-2.5 GHz,电磁屏蔽效率大于3 dB。与传统聚合物材料如填加金属的聚氨酯和聚酯相比,所制复合材料呈微波段吸收,可作为电磁屏蔽材料。

关键词: 橡胶木屑 , 化学活化 , 活性炭 , 微波吸收材料 , 介电常数 , 回波损耗

出版年份

刊物分类

相关作者

相关热词