{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过复合电沉积技术制备了纳米叠层锌/碳纳米管和光亮锌/碳纳米管2种复合薄膜,薄膜的拉曼光谱验证了锌与碳纳米管的共沉积.薄膜表面的场发射扫描电子显微镜观测显示碳纳米管表面的金属包覆层连续且均匀,预示着良好的界面结合.在2种薄膜的断口和裂纹处分别发现了被拔出基体和桥联的碳纳米管,证实了碳管对基体具有有效的增强作用.","authors":[{"authorName":"吴惠箐","id":"bb9aaf00-af30-4691-b028-67abe44bee6c","originalAuthorName":"吴惠箐"},{"authorName":"丁桂甫","id":"90e785ad-a670-44a3-b1f1-53dd9fc9542f","originalAuthorName":"丁桂甫"},{"authorName":"王裕超","id":"9926bab0-5515-4e4e-9d2c-aba30fc453d7","originalAuthorName":"王裕超"},{"authorName":"","id":"9e5a4f00-17a7-4cd1-85f4-444a2692f332","originalAuthorName":"汪红"}],"doi":"10.3969/j.issn.1004-227X.2006.11.004","fpage":"13","id":"1ceb0fbf-093d-48af-a8a9-97e78f50c13d","issue":"11","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"12e4ca5d-a350-412f-a093-6d57b84eb0c8","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"f23cad30-6221-4133-a9c1-8bf38cec3e79","keyword":"金属基复合材料","originalKeyword":"金属基复合材料"},{"id":"c3383a11-6655-4e37-be87-a96ec1d58abd","keyword":"复合电沉积","originalKeyword":"复合电沉积"},{"id":"38b74273-d5f4-4a95-bd5a-14bd0bd56811","keyword":"薄膜","originalKeyword":"薄膜"}],"language":"zh","publisherId":"ddyts200611004","title":"锌/碳纳米管复合电沉积薄膜性能研究","volume":"25","year":"2006"},{"abstractinfo":"采用UV-LIGA技术和Ni-W/Ni叠层电镀方法,在微喷嘴模具上制备出低应力Ni-W沉积层.研究了热处理条件对低应力Ni-W电沉积层硬度的影响.考察了沉积态及热处理态的Ni-W层、Ni层的耐磨性.结果发现,热处理后Ni-W/Ni叠层微模具界面结合良好,在干摩擦条件下,经过热处理的Ni-W层的耐磨性是Ni层的6倍;在550 ℃、2 h真空热处理条件下,Ni-W电沉积层应力最低,为230MPa,硬度大于950HV.","authors":[{"authorName":"","id":"974aab23-7557-4563-a788-68d1972c5c5c","originalAuthorName":"汪红"},{"authorName":"姚锦元","id":"039b4307-dcf7-447b-b04b-662ad9ef6511","originalAuthorName":"姚锦元"},{"authorName":"戴旭涵","id":"2017a1fa-0996-4558-a354-70d300c2b721","originalAuthorName":"戴旭涵"},{"authorName":"王志民","id":"99d4e986-b293-4559-950c-e22bc3f421da","originalAuthorName":"王志民"},{"authorName":"朱军","id":"1de9bcca-5468-483f-91c6-6ed7a878a477","originalAuthorName":"朱军"},{"authorName":"赵小林","id":"201abd4a-3c34-438a-a01d-6475a4996b56","originalAuthorName":"赵小林"}],"doi":"10.3969/j.issn.1004-227X.2007.08.002","fpage":"7","id":"235a7eee-3044-4e96-a08e-081ac98abe26","issue":"8","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"bde8fdf3-cb8a-4c55-a389-441f099f4cfc","keyword":"微模具","originalKeyword":"微模具"},{"id":"ad04fc29-7480-4788-914f-f4c18e2ec3d0","keyword":"喷嘴","originalKeyword":"喷嘴"},{"id":"4b2cbd76-f2e3-4845-9e1d-0d4087d16c10","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"8540cadd-0861-4796-a047-7f47d3c5cb56","keyword":"Ni-W合金","originalKeyword":"Ni-W合金"},{"id":"b347ae14-fa38-493e-963d-bb7c2c4fbd9e","keyword":"UV-LIGA(紫外-光刻、电铸、复写技术)","originalKeyword":"UV-LIGA(紫外-光刻、电铸、复写技术)"},{"id":"6472866d-5869-4262-ba20-8d5e13c54942","keyword":"低应力","originalKeyword":"低应力"},{"id":"5ac0c964-8376-49bc-9bd4-4e6037e5e3e2","keyword":"耐磨性","originalKeyword":"耐磨性"}],"language":"zh","publisherId":"ddyts200708002","title":"低应力Ni-W/Ni叠层微模具的制备与特性","volume":"26","year":"2007"},{"abstractinfo":"选择聚氨酯改性环氧树脂作为基体,利用微加工工艺制备了一种以电镀镍丝作为增强体的微尺寸有序增强聚合物基体复合材料。ANSYS有限元仿真结果表明基体完全包裹增强体能够很好地缓解应力集中,当增强体的排布角度为45°,体积含量为62.5%时,复合材料变形过程中应力集中程度相对最弱。对制备的微尺寸复合材料进行了DMA拉伸测试,结果表明相比单一的聚合物基体材料,有序增强复合结构材料的抗拉强度和弹性模量分别约提高了4倍和3倍,最后,通过扫描电镜观察了试样断口,对其拉伸断裂过程进行了合理分析。","authors":[{"authorName":"张振杰","id":"e23d4281-687f-4735-afee-6bad20d390cc","originalAuthorName":"张振杰"},{"authorName":"","id":"099155e8-cc8f-4cc1-af5d-74a9a59119bb","originalAuthorName":"汪红"},{"authorName":"杨卓青","id":"f5ef1617-81dd-4b26-a61e-c561e15d0a34","originalAuthorName":"杨卓青"},{"authorName":"丁桂甫","id":"716f9514-629e-4269-ad69-671185396609","originalAuthorName":"丁桂甫"},{"authorName":"赵小林","id":"eacd2d3d-2740-4d1d-93d2-743309667987","originalAuthorName":"赵小林"}],"doi":"","fpage":"1836","id":"36bc93f7-f0d6-462a-85a1-e2f7d3de8327","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"813484a3-3010-4fb5-946e-948d3f7ac81f","keyword":"MEMS","originalKeyword":"MEMS"},{"id":"46300134-0cf8-46fa-927b-b486d1f5e7e1","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"8f8c5397-3c5a-4292-9f9c-07bd1f1a1183","keyword":"ANSYS","originalKeyword":"ANSYS"},{"id":"63d28ae3-26be-4374-8a51-2dcc42b68ecf","keyword":"有序增强","originalKeyword":"有序增强"},{"id":"fc042931-7c6e-4008-8d66-e086cc186fcc","keyword":"微尺度","originalKeyword":"微尺度"}],"language":"zh","publisherId":"gncl201110027","title":"一种微尺度有序增强复合材料的制备及其力学性能表征","volume":"42","year":"2011"},{"abstractinfo":"基于非硅微器件材料的特殊性能要求,研究了热处理对氨基磺酸盐镀镍层热稳定性的影响.随热处理温度升高,镍镀层的硬度先缓慢下降,高于300℃后则急剧降低.镍镀层晶粒变粗、晶界减少及受外力作用时易变形是热处理后镍镀层硬度降低的主要原因.热处理温度对镍镀层耐蚀性的影响不显著.热处理温度低于400℃时,镍镀层与Cr/Cu、Ti基的结合强度随热处理温度的升高而显著增强.因此,氨基磺酸盐镀镍层在低于300℃的环境中使用时,其性能基本稳定.","authors":[{"authorName":"周玉凤","id":"33f030eb-b9cd-432b-a874-58637ccc2ec9","originalAuthorName":"周玉凤"},{"authorName":"李艳春","id":"e862b2ea-17da-44a6-958b-47d495b3f2ba","originalAuthorName":"李艳春"},{"authorName":"程萍","id":"f32d0d4b-e0f1-48a6-bb47-748adf1f3678","originalAuthorName":"程萍"},{"authorName":"樊江玲","id":"dcc30822-1280-4a11-b1fa-4e5d8feac2ba","originalAuthorName":"樊江玲"},{"authorName":"","id":"0e251e76-6e7b-477a-96c0-9e9b8fbab7ab","originalAuthorName":"汪红"}],"doi":"","fpage":"14","id":"56807f43-d2ad-4e71-8449-9f857e74e409","issue":"5","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"6b1a919b-250c-4d0e-b005-29e6503e7c8e","keyword":"微器件","originalKeyword":"微器件"},{"id":"6d69ad44-fc5c-421b-976d-cbfdaf0544f1","keyword":"氨基磺酸盐镀镍","originalKeyword":"氨基磺酸盐镀镍"},{"id":"40404ada-9106-4979-acda-b972e5b2735a","keyword":"热处理","originalKeyword":"热处理"},{"id":"6bfcd1f7-adc7-42a7-b0f4-2b1eddcd9edc","keyword":"硬度","originalKeyword":"硬度"},{"id":"b85f9a52-0714-4dfa-9533-64fd295a7d0f","keyword":"结合强度","originalKeyword":"结合强度"},{"id":"7ea1db69-5c82-43c7-a760-af6982081158","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"ddyts201205004","title":"热处理对氨基磺酸盐镀镍层性能的影响","volume":"31","year":"2012"},{"abstractinfo":"研究了采用Sn/Bi合金作为中间层的键合封装技术.通过电镀的方法在基片上形成Cr/Ni/Cu/Sn、芯片上形成Cr/Ni/Cu/Bi多金属层,在513K、150Pa的真空环境中进行共晶键合,键合过程不需使用助焊剂,避免了助焊剂对微器件的污染.实验表明:这种键合工艺具有较好的气密性,键合区合金层分布均匀,无缝隙、气泡等缺陷,键合强度较高,能够满足电子元器件和微机电系统(MEMS)可动部件低温气密性封装的要求.","authors":[{"authorName":"张东梅","id":"2b690046-886e-44e4-8199-fbe9f52880fe","originalAuthorName":"张东梅"},{"authorName":"丁桂甫","id":"43cbc921-379a-4530-a40b-bff1dadd1249","originalAuthorName":"丁桂甫"},{"authorName":"","id":"99a8d2b9-b652-4dcf-a899-67351200c533","originalAuthorName":"汪红"},{"authorName":"姜政","id":"2349d99a-7ac0-4cfa-8b79-9a0acc18bcb2","originalAuthorName":"姜政"},{"authorName":"姚锦元","id":"1531f306-3768-4585-9fbf-f5cca95364bd","originalAuthorName":"姚锦元"}],"doi":"10.3969/j.issn.1007-4252.2006.03.010","fpage":"211","id":"570ccfd8-615c-4c9b-9a3e-d91a4305a7c6","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"7a60260b-3ea7-4cb7-9095-c25884209e42","keyword":"微机电系统","originalKeyword":"微机电系统"},{"id":"7939d7f3-6b05-431a-8b93-24754e0cda7a","keyword":"气密性封装","originalKeyword":"气密性封装"},{"id":"cc50059f-1c91-46e9-b706-6f04a1f2e6f3","keyword":"低温键合","originalKeyword":"低温键合"}],"language":"zh","publisherId":"gnclyqjxb200603010","title":"基于Sn/Bi合金的低温气密性封装工艺研究","volume":"12","year":"2006"},{"abstractinfo":"为了实现汽车零部件环境友好型镀锌防腐蚀处理,利用纳米镀锌和电泳涂装技术的有机结合,分别对酸性和碱性镀液电镀锌进行纳米改性研究.采用金相显微镜和场发射扫描电子显微镜(FE-SEM)研究镀锌层的表面形貌以及复合镀层的断面形貌;测量了镀锌层的塔菲尔(Tafel)曲线;采用百格刀法测试层间结合力并对复合镀层进行中性盐雾试验.结果表明,两种镀锌层均出现纳米晶;随着镀锌电流密度的增大两种镀锌层的腐蚀电位均增大,同时腐蚀电流密度降低;复合镀层中性盐雾试验耐腐蚀时间达到1000 h且结合力达到5B水平,这表明纳米晶镀锌层和电泳漆层具有良好的结合力和耐腐蚀性能.","authors":[{"authorName":"苏永其","id":"0aeefab6-d579-417b-86e3-aa575041e687","originalAuthorName":"苏永其"},{"authorName":"张振杰","id":"a4a5d0e4-cace-4258-a6b9-de5841a19ed6","originalAuthorName":"张振杰"},{"authorName":"","id":"253587fe-c22b-4195-b8fb-38906014a9ad","originalAuthorName":"汪红"},{"authorName":"姚锦元","id":"577f5dcf-a5da-48b3-a4d3-7e5676951a64","originalAuthorName":"姚锦元"},{"authorName":"蒋为桥","id":"f50a2718-b6b6-49fb-9392-8ed726eda945","originalAuthorName":"蒋为桥"},{"authorName":"丁桂甫","id":"8444432b-6b21-4585-9915-0b0b7ea07449","originalAuthorName":"丁桂甫"}],"doi":"","fpage":"463","id":"5d48603a-54f8-4891-9b80-49e692b5c7a5","issue":"6","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"ec807cc4-f3bb-4372-84f6-dc5cfcdf381c","keyword":"纳米锌","originalKeyword":"纳米锌"},{"id":"37d5065b-317b-4e3a-ad6f-8541b8421a88","keyword":"电泳涂装","originalKeyword":"电泳涂装"},{"id":"2827a790-ef8b-44ea-a184-c1aded05f98d","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"c83257a7-9d5f-45d3-9b67-cc03e0185128","keyword":"复合镀层","originalKeyword":"复合镀层"}],"language":"zh","publisherId":"fsyfh201106014","title":"环保型纳米晶镀锌层/电泳漆复合镀层","volume":"32","year":"2011"},{"abstractinfo":"本文选用多壁碳纳米管作为增强相材料,采用超声复合空气搅拌及复合电沉积技术.制备了碳管分散均匀,镀层表面平整的连续镍基碳纳米管复合薄膜.经扫描电子显微镜(SEM)观察,超声复合空气搅拌可以有效改善镀层中碳纳米管的分散性和镀层表面平整性.通过选择合适的电流密度和镀液中碳纳米管含量可以调整镀层中碳纳米管的复合量,并同时保持镀层的平整性和镀层中碳纳米管的分散性.在实验测定的几组数据中,当碳管量为6~8g/L,电流密度为5A/dm2,分散剂加入量为6m1~8ml/L,超声复合空气搅拌时,得到表面平整,碳纳米管分散良好的连续致密镀层.用碳硫分析仪测得碳纳米管复合量可达5.7%(体积百分比).","authors":[{"authorName":"诸利达","id":"52c3f214-2127-4ef7-944f-a382607614d1","originalAuthorName":"诸利达"},{"authorName":"丁桂甫","id":"d1bd7636-ffd0-4e1c-b354-b444b1c92964","originalAuthorName":"丁桂甫"},{"authorName":"吴惠箐","id":"5c3b338b-d8aa-4916-b149-2bf00a1b7f6c","originalAuthorName":"吴惠箐"},{"authorName":"","id":"13b763c6-bff6-4d00-a2d9-17fb6a0b70ae","originalAuthorName":"汪红"}],"doi":"","fpage":"506","id":"63d4f50a-b931-4658-b7f7-34d621a55d06","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"b680ec97-27f4-45b1-8ad7-7de211257a75","keyword":"材料学","originalKeyword":"材料学"},{"id":"32a39c67-4cb0-43d4-b673-195be9d04187","keyword":"镍基复合材料","originalKeyword":"镍基复合材料"},{"id":"aa9a9ae6-eebf-4b0b-8801-f1dce1370b32","keyword":"复合电沉积","originalKeyword":"复合电沉积"},{"id":"f023de18-d638-4517-a428-0b56c4bae235","keyword":"碳纳米管","originalKeyword":"碳纳米管"}],"language":"zh","publisherId":"clkxygc200804004","title":"镍基碳纳米管复合薄膜的电沉积技术","volume":"26","year":"2008"},{"abstractinfo":"利用LIGA或UV-LIGA技术制备的镍,特别适合作为微器件的结构材料.材料的力学性能在微器件的仿真设计和实际使用中起到重要作用.主要利用常规的力学试验机和自行搭建的微拉伸平台,通过单轴拉伸方法测试了电流密度为20mA/cm~2的UV-LIGA镍薄膜的力学性能.3种测试方法的结果呈现了一致的规律性变化--弹性模量显著降低,强度显著提高,表明UV-LIGA镍具有与块体镍显著不同的力学性能.通过X射线衍射分析(XRD),测量了该电流密度下试样的择优取向和晶粒尺寸,通过场发射扫描电镜(SEM)观察了试样的表面形貌和拉伸断口,并初步地分析了UV-LIGA镍力学性能的变化原因.该测试结果为微器件的仿真设计提供了重要的参考依据.","authors":[{"authorName":"毛胜平","id":"69498a25-90e0-42d2-aac7-d65cf540646e","originalAuthorName":"毛胜平"},{"authorName":"","id":"0804b401-95b7-4da8-8357-8b7910617eef","originalAuthorName":"汪红"},{"authorName":"刘瑞","id":"78c1fde0-ec72-4526-ac09-c9233aa6532a","originalAuthorName":"刘瑞"},{"authorName":"汤俊","id":"07a6cca2-0a68-4bc6-b91a-fd883d293303","originalAuthorName":"汤俊"},{"authorName":"李雪萍","id":"bd87b36f-e60c-43e9-a32c-bfe8c071b8d5","originalAuthorName":"李雪萍"},{"authorName":"丁桂甫","id":"b947e46b-9e21-47c9-9039-4be1b51f851a","originalAuthorName":"丁桂甫"}],"doi":"","fpage":"354","id":"7385b3f9-e4e8-463e-ad94-fb305f755236","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d16ff2aa-b643-42d5-8cf2-281e1c806f3c","keyword":"MEMS","originalKeyword":"MEMS"},{"id":"17ff37d7-fc92-4bb0-925d-34e39150a71d","keyword":"UV-LIGA镍","originalKeyword":"UV-LIGA镍"},{"id":"bacf1863-893b-48a7-b507-a72e712aec82","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"836288ce-e20d-464c-a5bd-1406050ca580","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"b7b67967-4a64-4481-89ec-1186c8d741d3","keyword":"单轴拉伸","originalKeyword":"单轴拉伸"}],"language":"zh","publisherId":"gncl201002049","title":"UV-LIGA镍薄膜材料的力学性能测试与分析","volume":"41","year":"2010"},{"abstractinfo":"研究了基于高饱和磁感应强度的铁硅铝软磁材料的复合软磁材料薄膜的低温成型工艺和磁性能。绝缘包覆工艺上,使用高电阻率的锰锌铁氧体软磁粉末做绝缘剂。粘结工艺上,使用水玻璃做粘结剂,低温固化粘结。与传统工艺比,低温成型工艺与微加工工艺兼容。应用该工艺制作了软磁薄膜,采用超景深三维显微系统 VHX-2000观测复合材料的微观结构;运用振动样品磁强计测试薄膜的静态磁性能参数;使用交流磁化率测量仪测试薄膜动态磁性能参数。针对软磁磁粉颗粒度、绝缘包覆、粘结成型等不同工艺因素,制作了薄膜样品,总结了不同工艺因素对薄膜综合磁性能的影响。","authors":[{"authorName":"谢辅强","id":"3350d2a4-5336-4081-9bd0-3040fe7f86a2","originalAuthorName":"谢辅强"},{"authorName":"丁桂甫","id":"45d1f72e-ac97-4c76-9fd5-fba6eaa28e07","originalAuthorName":"丁桂甫"},{"authorName":"","id":"94c5500f-f9d9-4d62-81f5-6ce9805a079a","originalAuthorName":"汪红"},{"authorName":"程萍","id":"9e0b1b34-e962-4f8c-9c90-1c7231017a70","originalAuthorName":"程萍"},{"authorName":"王艳","id":"ff77571c-3ef6-4676-a25d-a5695a9a5e48","originalAuthorName":"王艳"}],"doi":"10.3969/j.issn.1001-9731.2014.10.025","fpage":"10109","id":"9a4d57bc-8666-47a8-be6a-c4653ad49d0e","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6f01b55b-4b05-40b6-81ef-d0edd13471c7","keyword":"复合软磁材料薄膜","originalKeyword":"复合软磁材料薄膜"},{"id":"a9ccdf10-a7d4-4ba4-96e9-bd1b58dd1401","keyword":"综合磁性能","originalKeyword":"综合磁性能"},{"id":"ba1259f6-a9cf-42aa-b168-424f0ccc72b2","keyword":"绝缘剂","originalKeyword":"绝缘剂"},{"id":"b4b9b9c4-ed1f-4fce-a0be-2a9d3c035ef9","keyword":"粘结剂","originalKeyword":"粘结剂"},{"id":"d455ac03-44b8-45c6-8711-92a0c6d478c3","keyword":"低温成型","originalKeyword":"低温成型"}],"language":"zh","publisherId":"gncl201410025","title":"铁硅铝/锰锌铁氧体复合软磁薄膜成型工艺及磁性能研究","volume":"","year":"2014"},{"abstractinfo":"本文主要介绍了一种闭锁电热微开关的制备及性能测试.利用双层膜电热微驱动器,基于双悬臂梁的结构设计,实现开关的驱动和闭锁.采用MEMS表面徼加工技术完成所设计微开关器件的制备,并对其进行性能测试.结果表明,施加的脉冲电信号的最佳占空比为10%,并测得电阻丝能承受的最大功耗为90mW,单臂粱的翘曲高度为58 μm,所得结果能够满足设计的闭锁电热微开关的工作需要.将本次设计的微开关连接到外接电路中,并施加时序双脉冲电信号,测得了外接电路的导通信号.","authors":[{"authorName":"张颖","id":"d9ce00e6-91ab-42dd-b63c-015dee8af2ef","originalAuthorName":"张颖"},{"authorName":"","id":"8e404469-a4d1-4456-ab50-9762664d802d","originalAuthorName":"汪红"},{"authorName":"毛胜平","id":"8cac3210-c3d0-488f-9893-530c6bbbcc58","originalAuthorName":"毛胜平"},{"authorName":"戴旭涵","id":"dd7cd792-ec81-4bbf-ad36-be920245c726","originalAuthorName":"戴旭涵"},{"authorName":"丁桂甫","id":"6ef9c887-ce5e-4f49-8e8d-1f951e933990","originalAuthorName":"丁桂甫"}],"doi":"","fpage":"345","id":"c9163699-4686-442d-b4a9-08e19e142b4d","issue":"5","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"b13b4e44-b217-4d79-8c23-0f70cf79086d","keyword":"电热驱动","originalKeyword":"电热驱动"},{"id":"0a029975-3fd3-4a9d-b52d-95a2b3402a12","keyword":"机械锁定","originalKeyword":"机械锁定"},{"id":"cb1a88d2-f314-4f2b-adf8-fec6067b4d11","keyword":"MEMS微加工工艺","originalKeyword":"MEMS微加工工艺"},{"id":"a2a107f1-1bed-4e47-bbc1-a7db87acd4ea","keyword":"时序双脉冲电信号","originalKeyword":"时序双脉冲电信号"}],"language":"zh","publisherId":"gnclyqjxb201205002","title":"闭锁电热微开关的制备及性能测试","volume":"18","year":"2012"}],"totalpage":143,"totalrecord":1428}