{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了非晶碳纳米管作为锂离子电池负极材料的电化学行为以及氧化处理对其嵌锂容量的影响. 结果表明:在20mAh·g-1的充放电条件下,原始非晶碳纳米管首次可逆容量为305mAh·g-1;在300-450℃氧化处理后,非晶碳纳米管中的氧和氢氧根中和了管壁中的大量不饱和键,非晶碳纳米管中死锂的位置减少,纯度提高,嵌锂可逆容量增加.在300℃氧化处理的非晶碳纳米管首次可逆容量最高可达533mAh·g-1,并有良好的循环寿命.","authors":[{"authorName":"王振旭","id":"e7137a34-629e-4ef6-b6c7-f565012f00a7","originalAuthorName":"王振旭"},{"authorName":"魏学东","id":"def4ccdb-ce50-4464-a0a9-20df0f991c9f","originalAuthorName":"魏学东"},{"authorName":"赵廷凯","id":"f91a9e3e-9836-4b26-ac36-d8bbd68c5cbe","originalAuthorName":"赵廷凯"},{"authorName":"柳永宁","id":"5746fc4e-134b-4ca3-b4e1-93a3a0382d3c","originalAuthorName":"柳永宁"}],"doi":"10.3321/j.issn:1005-3093.2008.03.017","fpage":"312","id":"4145e374-d0d9-496f-bf66-395f52f8c872","issue":"3","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"2b4e12c7-92ec-4d0b-9dde-56274a894869","keyword":"无机非金属材料","originalKeyword":"无机非金属材料"},{"id":"a0fd199e-f533-4a07-be7f-62a9158f464d","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"28e2ad67-120b-4f03-a5c0-1526364799f2","keyword":"负极材料","originalKeyword":"负极材料"},{"id":"0968d7ca-dff6-4911-bd82-5f548f0a796f","keyword":"非晶碳纳米管","originalKeyword":"非晶碳纳米管"},{"id":"a9cfeb9d-2eb9-4538-bc7b-a7dcdcb932c1","keyword":"可逆容量","originalKeyword":"可逆容量"}],"language":"zh","publisherId":"clyjxb200803017","title":"非晶碳纳米管新型锂离子电池负极材料","volume":"22","year":"2008"},{"abstractinfo":"将核壳的聚吡咯基的碳@碳纳米管(C@CNT)与纳米片组装的氧化镍(NiO)微球结合,制备了一种多孔的锂离子电池负极材料(NiO/C@CNT),该材料(NiO/C@CNT)与纯的NiO和NiO/CNT相比,其容量值和循环稳定性能明显提高.在50 mA·g-1的电流密度下,经过20次循环后,其可逆容量达到573 mA·g-1,容量保持率为68.6%.这些性能的提高是由于核壳结构的C@CNT的导电缓冲性引起的.C@CNT具有诸如多孔结构、大比表面积、高电化学活性、高电子导电性和良好的浸润性等许多优点,这些优点有利于避免电极材料显著的体积变化,因此在锂嵌入和脱出过程中可减少电极容量衰减并提高传质速率.","authors":[{"authorName":"周佳盼","id":"04cc66a8-d53c-4f40-9182-729156a6580f","originalAuthorName":"周佳盼"},{"authorName":"米红宇","id":"c4246755-faf3-4fb0-a5f5-c80ddabcc56a","originalAuthorName":"米红宇"},{"authorName":"王吉德","id":"bef9a1f5-4e83-4075-85f9-230a2e5c1133","originalAuthorName":"王吉德"},{"authorName":"崔青霞","id":"ff355947-e566-49d3-a65e-3e41c132fcbc","originalAuthorName":"崔青霞"},{"authorName":"仲佳亮","id":"c4f3330f-029e-494e-af3a-fe04e1cb6c08","originalAuthorName":"仲佳亮"}],"doi":"","fpage":"2109","id":"728f5520-0378-46eb-8948-722b1ba08ae8","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"7027391e-067b-49fd-b211-517f0629e230","keyword":"氧化镍微球","originalKeyword":"氧化镍微球"},{"id":"ff9168a0-ef23-44ce-a8a7-e6e0bdd74690","keyword":"碳@碳纳米管","originalKeyword":"碳@碳纳米管"},{"id":"d31deb24-d33d-4687-9c29-dc1b806cb33b","keyword":"可逆容量","originalKeyword":"可逆容量"},{"id":"555eb3cc-72a4-4ef4-899d-5851cb227585","keyword":"锂离子二次电池","originalKeyword":"锂离子二次电池"}],"language":"zh","publisherId":"xyjsclygc201509007","title":"氧化镍/碳@碳纳米管负极材料的制备及储锂性能","volume":"44","year":"2015"},{"abstractinfo":"用硫钨酸铵热分解制备出了WS2纳米纤维,采用TEM,HRTEM,XRD等对产物的形貌、结构、组成进行了检测,表明所制备出的灰黑色WS2纳米纤维平均直径为几十nm,最小只有几nm,长度为几十μm.通过XRD曲线与标准衍射谱比较,产物属六方晶系, a=0.315 1 nm,c=1.271 nm,基本无杂质,较纯净.ED分析还表明纤维为单晶,晶化程度好,(002)和(100)等衍射斑点清晰,与XRD分析结果一致.电化学测试表明,当电池在0.1 C倍率,0.05~2.5 V电压范围内循环时,嵌/脱锂平台在0.11 V和0.5 V左右,首次可逆容量为730.1 mA*h/g, WS2纳米纤维的储锂机理是片层间嵌锂,纳米级缝隙嵌锂和缺陷位置嵌锂.","authors":[{"authorName":"马江虹","id":"902d5f50-7f36-4caf-83bf-acf0f34ca60d","originalAuthorName":"马江虹"},{"authorName":"翟玉春","id":"0779d8bb-11a9-4809-afbb-4ac412beaaa1","originalAuthorName":"翟玉春"},{"authorName":"田彦文","id":"0b569dd7-fc3b-44e3-ac30-01e9c066ad03","originalAuthorName":"田彦文"},{"authorName":"徐茶清","id":"c721371b-fdcb-47f3-a6d1-55f50a6a7ff2","originalAuthorName":"徐茶清"}],"doi":"10.3969/j.issn.1671-6620.2004.01.009","fpage":"39","id":"85a4d4db-aa9c-4aef-934c-db39ddbc0d4c","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"2f7e93b0-eb08-449b-9b05-d4f4a4e98b02","keyword":"WS2纳米纤维","originalKeyword":"WS2纳米纤维"},{"id":"acacd8e0-2815-48db-a3ca-7113089e6816","keyword":"热分解","originalKeyword":"热分解"},{"id":"f00cd0c2-7a62-4bef-8bbe-c54cde89c8be","keyword":"表征","originalKeyword":"表征"},{"id":"869ae86b-e5a0-4d06-8c36-d55a9dda3dce","keyword":"电化学性能","originalKeyword":"电化学性能"},{"id":"48ab02f7-56ad-4be6-ab44-aaaa511ad42b","keyword":"可逆容量","originalKeyword":"可逆容量"},{"id":"da8ed5c7-360d-4dea-a6cf-b413de34742d","keyword":"储锂机理","originalKeyword":"储锂机理"}],"language":"zh","publisherId":"clyyjxb200401009","title":"WS2纳米纤维的制备及电化学性能","volume":"3","year":"2004"},{"abstractinfo":"以SnO2和葡萄糖为原料,采用一种简单的低温水热法制备了SnO2/C复合材料.采用SEM, TEM, XRD, TG和电化学测试系统对SnO2/C复合材料进行研究,研究结果表明:样品由亚微米大小球形颗粒组成,碳含量大约1.5 wt%.作为锂离子电池负极材料,SnO2/C复合材料展现了高达52.7%的起始库仑效率和753.4 mAh/g的可逆容量,而没有碳复合的SnO2材料仅显示了39.8%的起始库仑效率和548 mAh/g的可逆容量.SnO2/C复合材料也展现了良好的循环性能和稳定的高倍率性能.这表明水热法低温引入碳是SnO2/C复合材料具有良好电化学性能的重要影响因素.","authors":[{"authorName":"吴诗德","id":"fb96b14f-9c54-4fc6-882f-434d2eba1e5d","originalAuthorName":"吴诗德"},{"authorName":"宋彦良","id":"29671429-9b7e-45ec-b5b4-04729821bf6d","originalAuthorName":"宋彦良"},{"authorName":"魏伟","id":"11e7638d-d960-4615-b780-1bd8942befc8","originalAuthorName":"魏伟"},{"authorName":"李超","id":"2c0a81bd-0536-4396-a283-c9ed35f0fbde","originalAuthorName":"李超"},{"authorName":"陈荣峰","id":"edf22922-04a3-4421-8561-4e4022e3c7fe","originalAuthorName":"陈荣峰"}],"doi":"","fpage":"1211","id":"cc05301d-f003-4168-9568-b50bd40ce802","issue":"5","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"744f6212-e5d3-4ff1-aafb-c4becd0c2428","keyword":"SnO2/C","originalKeyword":"SnO2/C"},{"id":"809c9d46-a4dc-4183-8b72-fee18cdc11fe","keyword":"库仑效应","originalKeyword":"库仑效应"},{"id":"96dd813d-b65f-4f51-895a-df83f18dc3a8","keyword":"可逆容量","originalKeyword":"可逆容量"}],"language":"zh","publisherId":"rgjtxb98201005025","title":"低温引入碳对锂离子电池材料SnO2阳极行为的影响","volume":"39","year":"2010"},{"abstractinfo":"经典的逻辑关系可以使用逻辑函数加以表示,通过类比可以定义量子逻辑函数.然而量子逻辑门实现的都是幺正变换,从而是可逆变换,非可逆变换不能直接实现.通过添加辅助量子位可以增添量子输出信号的区分位,完成对非可逆逻辑门的改造,使得非可逆逻辑门在量子逻辑电路中得到可逆实现.具体研究了或门、与非门以及或非门等常见的逻辑门的改造方法.以丢失部分量子信息为代价来改造量子逻辑电路,并给出了可以实现的优化后的量子逻辑电路.","authors":[{"authorName":"吕洪君","id":"78f36a12-7bd8-457b-9439-41c0e2c9dde0","originalAuthorName":"吕洪君"},{"authorName":"彭斐","id":"616bb26a-9d9f-4378-a624-6b47eeb39a84","originalAuthorName":"彭斐"},{"authorName":"吴天昊","id":"0a3e12dd-a5b4-4fd5-8b0c-6684d334dc63","originalAuthorName":"吴天昊"},{"authorName":"解光军","id":"e7c45096-89e2-4e34-8e2a-f2f3fff8238d","originalAuthorName":"解光军"}],"doi":"10.3969/j.issn.1007-5461.2009.06.006","fpage":"668","id":"b73cd06b-a4e2-427a-8f11-060ba3566064","issue":"6","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"531827f0-f28a-4135-8a27-518c6ffa7f7a","keyword":"量子信息","originalKeyword":"量子信息"},{"id":"775d1f99-14ce-46d2-ad61-b04906c06a74","keyword":"量子逻辑电路","originalKeyword":"量子逻辑电路"},{"id":"ae2ffe17-42a1-4287-b047-4d1e43a723d7","keyword":"非可逆逻辑门","originalKeyword":"非可逆逻辑门"},{"id":"fd7f691e-4388-47b6-8c87-df53b9c26ec1","keyword":"量子逻辑函数","originalKeyword":"量子逻辑函数"},{"id":"c319b9bd-6f8f-4a36-a950-01a1817f080a","keyword":"冗余量子位","originalKeyword":"冗余量子位"}],"language":"zh","publisherId":"lzdzxb200906006","title":"非可逆逻辑门的量子可逆实现研究","volume":"26","year":"2009"},{"abstractinfo":"采用含有多碳链结构的金属有机化合物,利用固相反应,得到亚微米尺寸的SnSbx合金颗粒,高度均匀地沉积在中间相碳微球(CMS)球体表面.合成的SnSbx/CMS复合材料做成扣式电池经电化学性能测试,电极可逆容量超过430mAhg-1,相对于空白CMS电极(可逆容量310mAhg-1)提高近40%,循环30次后容量维持在90%以上.结果表明:制备的复合电极不但具有较高的可逆容量,而且能防止纯粹合金嵌脱锂过程产生的严重体积效应,从而提高电极循环性能.","authors":[{"authorName":"刘宇","id":"b48a2eeb-4726-4c8a-847f-511c11ef118a","originalAuthorName":"刘宇"},{"authorName":"解晶莹","id":"413cac5f-f374-4cd2-ae54-2e811939581a","originalAuthorName":"解晶莹"},{"authorName":"杨军","id":"4fc99f8a-d19e-4ce9-bb3d-e5743231d9d4","originalAuthorName":"杨军"},{"authorName":"王可","id":"fc4ce35a-2673-493b-b105-c48a1378920a","originalAuthorName":"王可"},{"authorName":"王保峰","id":"aefb4060-dc8a-46f0-b894-faa5aab6f2bc","originalAuthorName":"王保峰"}],"categoryName":"|","doi":"","fpage":"163","id":"a738f00c-5439-4770-92fd-b555b0ee9004","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"88c9af2a-b17d-4ebc-89ff-674cbcaef10a","keyword":"有机金属化合物","originalKeyword":"有机金属化合物"},{"id":"b34a64cc-cf51-484e-a50d-d1061e78d5c6","keyword":" alloy anode","originalKeyword":" alloy anode"},{"id":"95b84d35-8c7e-4444-84f6-8ef0bf075212","keyword":" carbonaceous mesophase spherules","originalKeyword":" carbonaceous mesophase spherules"},{"id":"7ed560c4-e4f8-41be-8726-bafd29bfde67","keyword":" lithium ion batteries","originalKeyword":" lithium ion batteries"}],"language":"zh","publisherId":"1000-324X_2003_1_20","title":"锂离子电池中的高容量合金/碳复合电极研究","volume":"18","year":"2003"},{"abstractinfo":"采用含有多碳链结构的金属有机化合物,利用固相反应,得到亚微米尺寸的SnSbx合金颗粒,高度均匀地沉积在中间相碳微球(CMS)球体表面.合成的SnSbx/CMS复合材料做成扣式电池经电化学性能测试,电极可逆容量超过430mAhg-1,相对于空白CMS电极(可逆容量310mAhg-1)提高近40%,循环30次后容量维持在90%以上.结果表明:制备的复合电极不但具有较高的可逆容量,而且能防止纯粹合金嵌脱锂过程产生的严重体积效应,从而提高电极循环性能.","authors":[{"authorName":"刘宇","id":"2b594587-e591-456f-8812-12a838a99f48","originalAuthorName":"刘宇"},{"authorName":"解晶莹","id":"c3dbd85a-cf80-4228-affb-885d9d88df4d","originalAuthorName":"解晶莹"},{"authorName":"杨军","id":"c8e2aee0-b461-4cd6-8146-1577c1cef374","originalAuthorName":"杨军"},{"authorName":"王可","id":"f62aa673-7529-4771-81ea-a8676252489e","originalAuthorName":"王可"},{"authorName":"王保峰","id":"aeee33fa-0d86-49d0-9105-9bbb736c2a80","originalAuthorName":"王保峰"}],"doi":"10.3321/j.issn:1000-324X.2003.01.025","fpage":"163","id":"c2a23652-0bec-45df-92a8-ae2cc94b13a1","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"6b25b035-b612-4e4e-ba8d-304e98958f5d","keyword":"有机金属化合物","originalKeyword":"有机金属化合物"},{"id":"5d135ca2-af48-4f2a-8b7b-66d91acbe92c","keyword":"合金负极","originalKeyword":"合金负极"},{"id":"3b36f7d8-0d0b-41d6-a538-97d2fdf5a3d0","keyword":"中间相碳微球","originalKeyword":"中间相碳微球"},{"id":"5625c831-e3be-44dd-8a4e-f4dd1e61fa18","keyword":"锂离子电池","originalKeyword":"锂离子电池"}],"language":"zh","publisherId":"wjclxb200301025","title":"锂离子电池中的高容量合金/碳复合电极研究","volume":"18","year":"2003"},{"abstractinfo":"以原子比为1:1的Co与Sn金属粉为原料,采用球磨法制备了锂离子电池负极Sn-Co合金,研究了其形成机理及可逆储锂性能.结果表明,球磨先形成CoSn3和CoSn2等中间相,最后形成CoSn2相,继续球磨,CoSn2相的晶粒尺寸先逐渐减小后趋于稳定.晶粒的细化有利于提高合金的首次可逆容量和循环性能,球磨50 h后,首次可逆容量接近最大值,为426 mAh/g,30次循环后容量保持率为67.1%.热处理后,物相转变为CoSn相,提高了合金的循环性能,30次循环后容量保持率为73.7%,但热处理过程中晶粒和颗粒的长大使首次可逆容量降低.","authors":[{"authorName":"沈丁","id":"81318c04-be63-423f-be4e-5e16ad8222ac","originalAuthorName":"沈丁"},{"authorName":"杨绍斌","id":"88f79d64-7c28-4e6c-b5cb-4d375319ac99","originalAuthorName":"杨绍斌"},{"authorName":"张淑凯","id":"2a6a4227-a708-4599-b234-2c8836c00557","originalAuthorName":"张淑凯"},{"authorName":"薛维华","id":"53444600-8edd-45ed-a5a7-2aaee5a48396","originalAuthorName":"薛维华"}],"doi":"","fpage":"24","id":"f76018a9-abc4-449c-b691-d0b81b4878d5","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"7455412c-cf32-4aa9-b9df-ecf532b16e38","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"5a87d7e2-7ab0-4435-8858-f6f3c03bd0e1","keyword":"Sn-Co","originalKeyword":"Sn-Co"},{"id":"eed554de-6ed2-4384-b725-2b5b5b0cd59a","keyword":"球磨","originalKeyword":"球磨"},{"id":"f438beba-fde3-4bf6-8301-1558a4a70282","keyword":"热处理","originalKeyword":"热处理"},{"id":"d1846bc9-b1eb-45f7-9da7-4b3e1fe30aa7","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"jsrclxb201012005","title":"球磨法制备Sn-Co合金及其可逆储锂性能","volume":"31","year":"2010"},{"abstractinfo":"采用钴铵盐作为变色物质,无机非金属材料(SiO2,CaO,Al2O3,河沙粉)作为填料,研制成低温可逆示温涂料,该产品有较高的性价比和实用性.","authors":[{"authorName":"刘星生","id":"45194831-d2bd-4f94-b599-1fecc5af1575","originalAuthorName":"刘星生"},{"authorName":"张鸿雁","id":"413ea020-2777-46e5-a1c7-d5693d7d2a06","originalAuthorName":"张鸿雁"},{"authorName":"黄国林","id":"86a1b6f7-684e-4b27-9beb-a1288d5b245b","originalAuthorName":"黄国林"},{"authorName":"张燮","id":"e710da70-862c-4ad6-8708-18f0912f5a63","originalAuthorName":"张燮"}],"doi":"10.3969/j.issn.0253-4312.2005.09.016","fpage":"54","id":"b20bc07d-2b5a-4c54-8a09-0a61fa3b9127","issue":"9","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"43269a46-d80f-4056-85bb-dec870701836","keyword":"示温涂料","originalKeyword":"示温涂料"},{"id":"9535597a-8ee2-475c-a785-fad5415515cb","keyword":"变色颜料","originalKeyword":"变色颜料"},{"id":"6c237895-8aa8-40b4-a0bd-ffaccb83b48a","keyword":"河沙粉","originalKeyword":"河沙粉"},{"id":"8a150872-f8bc-4b85-a8b0-8dd5630fca8b","keyword":"钴铵盐","originalKeyword":"钴铵盐"}],"language":"zh","publisherId":"tlgy200509016","title":"低温可逆示温涂料的研究","volume":"35","year":"2005"},{"abstractinfo":"根据影响绝缘材料击穿的主要因素,本文着重阐述了交流耐压击穿装置的容量指标问题.在确定耐压击穿装置的容量时,要考虑试件在击穿过程可能产生的最大击穿电流值.对于某种绝缘介质或构件,合理选定耐压击穿装置的容量对正确进行试验是很重要的.","authors":[{"authorName":"于治会","id":"8e1790b6-8ada-4c83-bb18-be3d566cf8dc","originalAuthorName":"于治会"}],"doi":"10.3969/j.issn.1009-9239.2000.04.011","fpage":"41","id":"b07e1ed0-0fba-4a9f-b008-6b33883c3368","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"6d57566c-36ec-4efe-b6f4-04b2d105e2bf","keyword":"击穿装置","originalKeyword":"击穿装置"},{"id":"aa29a00d-250c-4791-a38c-01da9658abad","keyword":"容量","originalKeyword":"容量"},{"id":"f82a11b5-6c88-4b7c-8a9b-112ae5bd132e","keyword":"最大输出功率","originalKeyword":"最大输出功率"}],"language":"zh","publisherId":"jycltx200004011","title":"耐压击穿装置的容量指标研究","volume":"","year":"2000"}],"totalpage":424,"totalrecord":4233}