{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用等温差示扫描量热法(DSC)研究端羟基超支化聚酯改性纳米氧化钇(Y2O3-g-HBPE)对环氧树脂(EP)等温固化行为的影响,采用Kamal方程分析体系的固化动力学。结果表明:EP及EP/Y2O3-g-HBPE体系的固化机理均含有自催化机理;Y2O3-g-HBPE的加入使环氧树脂体系的固化速率常数k1、k2增大,同时使固化活化能增大。","authors":[{"authorName":"周红军","id":"bd4551e8-4421-4b69-80f6-9160da251776","originalAuthorName":"周红军"},{"authorName":"容敏智","id":"482121dd-062e-4d88-b9c9-01ec09dda75f","originalAuthorName":"容敏智"},{"authorName":"邓小安","id":"c07080ad-78b2-406e-8da0-84494c7f4431","originalAuthorName":"邓小安"},{"authorName":"周新华","id":"b1377ef4-a3e8-4ba8-a84c-cfae3ffb6063","originalAuthorName":"周新华"},{"authorName":"李洪波","id":"6290f375-193e-4689-abd9-efbbed5dd163","originalAuthorName":"李洪波"}],"doi":"","fpage":"102","id":"e91cbb90-c84d-41c5-9dbc-8ba721f00e14","issue":"5","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"6c9781ff-c37c-4404-b9ff-7625c08a95fb","keyword":"环氧树脂","originalKeyword":"环氧树脂"},{"id":"e5eec370-59dd-4bfa-9df4-884b3b5093a8","keyword":"纳米氧化钇","originalKeyword":"纳米氧化钇"},{"id":"d93c18e6-abba-4997-a2f1-b8827460aba5","keyword":"等温","originalKeyword":"等温"},{"id":"8959cece-d7c1-4d6b-9aeb-7ff367b0a603","keyword":"固化动力学","originalKeyword":"固化动力学"},{"id":"be4932cd-7794-46bc-a73f-06697ea0267f","keyword":"活化能","originalKeyword":"活化能"}],"language":"zh","publisherId":"jycltx201405023","title":"超支化聚酯改性纳米氧化钇/环氧树脂的等温固化动力学","volume":"","year":"2014"},{"abstractinfo":"以草酸为配体,在机械力作用下,与硝酸进行室温固相化学反应,制得草酸前驱体,然后进行DTA-TG分析,确定前驱体的热分解温度,在热分解温度下保温两小时后制得纳米氧化钇粉体,用XRD物相分析、SEM、紫外光谱对粉体进行形貌观测和表征.结果表明获得的粉体粒度分布均匀,达到纳米尺寸,并对紫外光有较强的散射和反射作用,对紫外线屏蔽效率高.","authors":[{"authorName":"李艳","id":"4b5e9835-3578-4ee8-a99f-465d7bc71ad5","originalAuthorName":"李艳"},{"authorName":"朱达川","id":"85f077d5-4cab-4d9b-bfc9-e363b447ef8e","originalAuthorName":"朱达川"},{"authorName":"涂铭旌","id":"fb30314a-5a11-4cb0-b8b6-6b862179eb7f","originalAuthorName":"涂铭旌"}],"doi":"10.3969/j.issn.1004-0277.2006.06.021","fpage":"80","id":"056d72ce-16cd-4ed6-a639-61c8f63e8c19","issue":"6","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"22c0ca46-414b-4da1-b94b-92cafef1d645","keyword":"室温固相反应","originalKeyword":"室温固相反应"},{"id":"84e37880-1b6e-43da-bb81-8648c578aaf1","keyword":"纳米氧化钇","originalKeyword":"纳米氧化钇"},{"id":"a1843688-a546-4927-8777-392899efdf67","keyword":"球磨","originalKeyword":"球磨"}],"language":"zh","publisherId":"xitu200606021","title":"室温球磨固相化学反应法制备纳米氧化钇","volume":"27","year":"2006"},{"abstractinfo":"以Y2O3为原料,在密闭反应器中采用水热法合成氢氧化钇纳米管. 分别采用X射线粉末衍射(XRD)、扫描电镜(SEM)、能谱(EDS)和热重-差热分析(TG-DTA)方法对所合成的氢氧化钇纳米管进行了物相、形貌、成分表征和热稳定性分析. 对影响氢氧化钇纳米管形成的反应条件如水热温度和水热时间进行了研究,采用透射电镜(TEM)分析了产物各个生长阶段的形貌,推测了氢氧化钇纳米管的形成机理. 研究表明:水热法制备氢氧化钇纳米管材料的最佳合成条件是乙醇和水作为溶剂,pH值为11~12、反应温度为220℃、反应时间为24h;氢氧化钇纳米管的形成过程可以分为两个阶段:第一阶段为前驱体的产生,第二阶段为前驱体转变为氢氧化钇纳米管. ","authors":[{"authorName":"田俐","id":"dae80f51-176d-43a9-930d-205934bdaf3f","originalAuthorName":"田俐"},{"authorName":"陈稳纯","id":"4148b8b1-b79c-493e-9793-fd7164bdb4d0","originalAuthorName":"陈稳纯"},{"authorName":"陈琳","id":"50e025fe-a065-4284-a052-5108d23820a6","originalAuthorName":"陈琳"},{"authorName":"梁恩湘","id":"352d47dd-6cd3-46f0-8502-c54f044968e6","originalAuthorName":"梁恩湘"},{"authorName":"张馨","id":"a0a5b03d-ce83-496a-a03e-1294fd1e25fe","originalAuthorName":"张馨"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2009.00335","fpage":"335","id":"21883b50-8a7a-4fb7-ac3b-92f2309275ce","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"ae6a3fe6-f3d8-408b-b148-072978ed9a1f","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"262037d8-45df-4cbd-8ab6-92387ad41908","keyword":" yttrium hydroxide","originalKeyword":" yttrium hydroxide"},{"id":"414ed9b6-986f-46c8-945b-7b3f85f17a99","keyword":" nanotubes","originalKeyword":" nanotubes"}],"language":"zh","publisherId":"1000-324X_2009_2_33","title":"水热法合成氢氧化钇纳米管","volume":"24","year":"2009"},{"abstractinfo":"以Y2O3为原料,在密闭反应器中采用水热法合成氢氧化钇纳米管.分别采用X射线粉末衍射(XRD)、扫描电镜(SEM)、能谱(EDS)和热重-差热分析(TG-DTA)方法对所合成的氢氧化钇纳米管进行了物相、形貌、成分表征和热稳定性分析.对影响氢氧化钇纳米管形成的反应条件如水热温度和水热时间进行了研究,采用透射电镜(TEM)分析了产物各个生长阶段的形貌,推测了氢氧化钇纳米管的形成机理.研究表明:水热法制备氢氧化钇纳米管材料的最佳合成条件是乙醇和水作为溶剂,pH值为11~12、反应温度为220℃、反应时间为24h;氢氧化钇纳米管的形成过程可以分为两个阶段:第一阶段为前驱体的产生,第二阶段为前驱体转变为氢氧化钇纳米管.","authors":[{"authorName":"田俐","id":"81e7234f-d216-444c-ba33-c4e3a52ec52a","originalAuthorName":"田俐"},{"authorName":"陈稳纯","id":"32ffbb8a-5be1-409e-b5ea-5ac6879b42b2","originalAuthorName":"陈稳纯"},{"authorName":"陈琳","id":"dec3090a-7c49-4e4a-8980-3a0d91000acd","originalAuthorName":"陈琳"},{"authorName":"梁恩湘","id":"3c8f2c9c-d00c-4e45-b85d-54868330e9c6","originalAuthorName":"梁恩湘"},{"authorName":"张馨","id":"ad4b52c3-f153-4b15-951e-e8eadea016e3","originalAuthorName":"张馨"}],"doi":"10.3724/SP.J.1077.2009.00335","fpage":"335","id":"3111eda1-725c-41b9-a0e2-3ac905a5b420","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9e637c37-defa-4f10-bc04-00096b251ff2","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"fa50b93d-52b5-4dc4-838a-45811132d508","keyword":"氢氧化钇","originalKeyword":"氢氧化钇"},{"id":"07ce9862-3629-4b8a-9d1d-f8d616e3f09d","keyword":"纳米管","originalKeyword":"纳米管"}],"language":"zh","publisherId":"wjclxb200902027","title":"水热法合成氢氧化钇纳米管","volume":"24","year":"2009"},{"abstractinfo":"采用熔盐法制备了氧化钇纳米粉体,探讨了改变盐与熔融盐的比例和焙烧温度对粉体粒度的影响,确定了纳米粉体的最佳实验条件.借助TG-DTA、XRD、TEM、BET等测试方法,对其物相、颗粒度、分散性和比表面积以及前驱体热分解特性作了描述.结果表明,焙烧温度为500℃、熔融盐与盐比为4:1时,可制备出分散性好、比表面积为84.2m2/g 、平均粒径为11nm的氧化钇粉体;随着焙烧温度的升高,粉体的粒径逐渐增大.","authors":[{"authorName":"李玉生","id":"113a4978-9b7e-4a2d-945a-4e68800d2a31","originalAuthorName":"李玉生"},{"authorName":"郭贵宝","id":"81a75fe5-1997-4e53-b059-ea1376ca0c3a","originalAuthorName":"郭贵宝"},{"authorName":"李元","id":"5314eef4-0069-45fd-81db-39fec97d74d1","originalAuthorName":"李元"},{"authorName":"安胜利","id":"cb08ec89-1696-4ac4-bfb2-7c5f6406b528","originalAuthorName":"安胜利"}],"doi":"10.3969/j.issn.1004-0277.2009.05.004","fpage":"15","id":"243b2739-1553-4425-83a0-97ca51922700","issue":"5","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"929184a9-2a62-4901-a699-10e1b9dff2eb","keyword":"纳米粉体","originalKeyword":"纳米粉体"},{"id":"7806746f-6dad-4c54-9919-ba13bf0f16ae","keyword":"氧化钇","originalKeyword":"氧化钇"},{"id":"64c9e250-c620-4a21-8939-33d543d40ba6","keyword":"熔融盐","originalKeyword":"熔融盐"},{"id":"8ac62c10-0600-43a9-bf06-3f7864abbacf","keyword":"团聚","originalKeyword":"团聚"}],"language":"zh","publisherId":"xitu200905004","title":"熔融法氧化钇纳米粉体的制备及表征","volume":"30","year":"2009"},{"abstractinfo":"本文采用尿素沉淀法合成了粒径约160 nm的激光陶瓷用氧化钇粉微球.颗粒呈较规则球形,单分散性良好.通过对反应过程的系统研究,探讨了粉体前驱体微球的生长机理,并研究了硫酸铵对前驱体微球生长习性的影响.对前驱体微球的热力学性质进行了研究.采用X射线衍射仪,扫描电镜,透射电镜,TG-DTA等仪器对实验过程及实验结果进行表征和分析.得出了溶液升温速率和硫酸铵对于氧化钇粉体制备的影响.较高的升温速率有助于前驱体颗粒在较短的时间内聚集.5%硫酸铵的加入明显减小前驱体尺寸,且硫酸根在1000℃煅烧时分解防止氧化钇微球之间出现烧结颈.从而形成外形规则、单分散的氧化钇微球.","authors":[{"authorName":"秦海明","id":"8df09307-ed75-4a86-8208-f46acc395ad6","originalAuthorName":"秦海明"},{"authorName":"刘宏","id":"90422346-21c6-4f6f-bf04-7cb4aabc2747","originalAuthorName":"刘宏"},{"authorName":"桑元华","id":"31ab88b6-6797-4c9f-a38b-cdf2a832db78","originalAuthorName":"桑元华"},{"authorName":"张晓琳","id":"b31c342f-c1d2-4b15-af00-e16806cf3f11","originalAuthorName":"张晓琳"},{"authorName":"吕耀辉","id":"30f2a42d-ccf3-4093-aa39-0cbe8a90eee1","originalAuthorName":"吕耀辉"},{"authorName":"王继扬","id":"aa139471-6ffd-4258-9581-48b920272772","originalAuthorName":"王继扬"}],"doi":"","fpage":"1455","id":"c2fc0da9-b638-4bea-a98c-8511c35aa697","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"ef6b9785-3a83-4f75-bc65-49be5093532d","keyword":"尿素沉淀法","originalKeyword":"尿素沉淀法"},{"id":"f44b18be-ab7b-4e07-923d-fc4182a9aa83","keyword":"氧化钇","originalKeyword":"氧化钇"},{"id":"743e69c6-1f6c-49d1-bc2b-ce785748bd7d","keyword":"升温速率","originalKeyword":"升温速率"},{"id":"3b92b1a3-20db-4d97-bd96-5ba0217b3135","keyword":"硫酸铵","originalKeyword":"硫酸铵"}],"language":"zh","publisherId":"rgjtxb98201106019","title":"合成条件对尿素沉淀法制备氧化钇纳米微球的影响","volume":"40","year":"2011"},{"abstractinfo":"以Y2O3胶体作粒子分散剂合成了在水中胶体分散的PAn-Y2O3纳米复合物,用透射电镜、红外光谱、拉曼光谱、导电测试仪等对所得复合物进行表征,结果表明,电镜下观察到复合物呈\"蛋糕-花生米\"状,复合物的导电率比掺杂态的聚苯胺低.红外和拉曼光谱分析表明,聚苯胺与氧化钇之间有化学键的结合.","authors":[{"authorName":"范颖","id":"fb9a5241-f134-4b8a-a176-6abd9413c925","originalAuthorName":"范颖"},{"authorName":"刘丽敏","id":"d63ef6b7-de20-4f0f-ae65-33010b2f1eb6","originalAuthorName":"刘丽敏"},{"authorName":"李长江","id":"f3d6fbef-3d19-451a-a0a1-95adf9d1b98e","originalAuthorName":"李长江"}],"doi":"","fpage":"70","id":"a0972743-b01f-42b9-9d55-267910aad6b0","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9b5c51d0-b7a6-4c22-85dc-dac23a3b8346","keyword":"聚苯胺","originalKeyword":"聚苯胺"},{"id":"90b61a4c-586e-4a67-a607-8353e154cf82","keyword":"氧化钇胶体","originalKeyword":"氧化钇胶体"},{"id":"4cdeff99-62fc-400a-8aad-9f6d5defe439","keyword":"纳米复合物","originalKeyword":"纳米复合物"}],"language":"zh","publisherId":"gfzclkxygc200503016","title":"胶体分散的聚苯胺/氧化钇纳米复合物的合成与表征","volume":"21","year":"2005"},{"abstractinfo":"利用燃烧法制备了稀土Er3+离子掺杂的氧化钇纳米晶材料.用JEM3010测量这种材料的结构与样品颗粒的分布,结果表明:晶粒尺寸约为30nm.用日立F-2500荧光光谱仪与978nm LD测量了该材料的上转换发光,得到该样品主要发绿色上转换发光,红色上转换发光非常弱.我们认为,这种现象与基质材料的低的声子能量与低的掺杂浓度有关.","authors":[{"authorName":"刘晃清","id":"6a4b3e6a-82db-4905-9969-03a7a0e31d79","originalAuthorName":"刘晃清"},{"authorName":"王玲玲","id":"19ab9739-ef17-42d9-8f4d-83d790b52067","originalAuthorName":"王玲玲"},{"authorName":"肖经纬","id":"cebc08d5-a335-4d7d-b80a-1755023fb26d","originalAuthorName":"肖经纬"},{"authorName":"宋国梁","id":"45f31799-f8a7-4111-ab94-20bb800fb2d9","originalAuthorName":"宋国梁"},{"authorName":"刘浩","id":"818b2319-07b8-4308-beb7-04d446b4bb46","originalAuthorName":"刘浩"}],"doi":"","fpage":"47","id":"0d317ea3-3632-41d5-9e6d-cd4c37388a62","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"068b68bd-1d94-49d8-b55d-f6d5362b5f74","keyword":"Er3+离子","originalKeyword":"Er3+离子"},{"id":"120a56cd-3a7c-4e20-b767-337835870e97","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"f180c040-b273-4c99-bb02-6f2cafd5055e","keyword":"氧化钇","originalKeyword":"氧化钇"},{"id":"22474f14-bb7a-43c1-8e27-4410f8a1e8c7","keyword":"上转换发光","originalKeyword":"上转换发光"}],"language":"zh","publisherId":"cldb2006z2014","title":"Er3+掺杂的氧化钇纳米材料上转换发光性质的研究","volume":"20","year":"2006"},{"abstractinfo":"使用真空电弧炉熔炼合成了添加x% Y2O3(x=0.05,0.08,0.1,x为质量分数)的碳锰钢,利用电化学阻抗频谱(EIS)、金相显微镜研究了添加Y2 O3的碳锰钢在3.5% NaCl溶液中的腐蚀行为.结果表明,氧化钇能提高碳锰钢的耐蚀性能,添加氧化钇所引起的钢中夹杂物形态变化和阻断晶界网状结构是导致耐蚀性变化的主要原因.","authors":[{"authorName":"赵文广","id":"7285f0f7-12f7-44e4-9389-fd79f06c154a","originalAuthorName":"赵文广"},{"authorName":"诸帅豪","id":"209adc91-984a-47d8-996b-f725d8046df7","originalAuthorName":"诸帅豪"}],"doi":"10.3969/j.issn.1004-0277.2011.05.014","fpage":"66","id":"265e03d5-26b6-48c1-b32f-04d2e95bc137","issue":"5","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"0ebc7997-7087-4ec0-9d72-1bc5a3dd31ab","keyword":"氧化钇","originalKeyword":"氧化钇"},{"id":"faf1ed9a-e011-4b78-8245-c2a253b55a3e","keyword":"碳锰钢","originalKeyword":"碳锰钢"},{"id":"7383a1a5-36b4-467f-ab30-511c861506a0","keyword":"电化学阻抗频谱","originalKeyword":"电化学阻抗频谱"},{"id":"39ab5d39-72df-4266-927b-4534afac7179","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"xitu201105014","title":"氧化钇对碳锰钢耐蚀性能的影响","volume":"32","year":"2011"},{"abstractinfo":"采用湿法球磨方法将不同含量氧化钇粉末添加到氧化铝粉末中,经冷等静压成型,1550℃常压烧结.通过研究发现,当氧化钇含量低于0.25wt%时,晶粒长大,存在封闭晶内气孔,相对密度变小,致密化程度低;当氧化钇含量介于0.25wt%~0.75wt%时,随着氧化钇含量增加,封闭气孔减少,晶粒减小,致密化程度增高;当氧化钇含量为1.0wt%时,在晶界生成第二相铝石榴石,相对密度较小,致密化程度降低.","authors":[{"authorName":"刘文燕","id":"68a9d08b-c8c4-4e48-9dfd-f54a6381b03f","originalAuthorName":"刘文燕"},{"authorName":"徐坦","id":"8229d438-1f40-4794-bfea-7d79605b47f9","originalAuthorName":"徐坦"},{"authorName":"刘璐","id":"8b92ced6-8017-4770-abaa-6cee5b55600e","originalAuthorName":"刘璐"},{"authorName":"夏风","id":"507e3dfb-aef8-422d-b514-354ee32b3ece","originalAuthorName":"夏风"},{"authorName":"肖建中","id":"9547bb70-ae06-4119-b133-a58000bf85cf","originalAuthorName":"肖建中"}],"doi":"","fpage":"1741","id":"4c628e8a-7b46-4482-bf9e-ddfb2d50df06","issue":"7","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"cd750d9d-c577-4101-b7e6-d20373ce1e2c","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"d77a3930-112e-4080-8150-37bba4f588b4","keyword":"氧化钇","originalKeyword":"氧化钇"},{"id":"587ec777-69f7-4c5c-9397-d513efb9fc5f","keyword":"致密化","originalKeyword":"致密化"},{"id":"cf8137b5-26d1-4c38-b8a0-1fa9192cdce5","keyword":"气孔","originalKeyword":"气孔"}],"language":"zh","publisherId":"rgjtxb98201607005","title":"氧化钇氧化铝陶瓷致密化的影响","volume":"45","year":"2016"}],"totalpage":4756,"totalrecord":47554}