{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在采用低温共沉淀-水热-煅烧法合成锂离子电池Fe-Ni-Mn体系正极材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的基础上,对合成的材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6进行V2O5的包覆改性研究,以提高材料Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的首次放电比容量和循环性能.用XRD、SEM、TEM、ICP光谱和恒流充放电测试研究包覆材料的结构和电化学性能.结果表明,V2O5包覆并没有改变材料的晶体结构,只存在于材料的表面,与未包覆的材料相比,V2O5包覆后的材料具有更好的首次放电容量和容量保持率.50周循环后,添加质量分数3%V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的放电比容量可以维持在200.3 mAh/g,大于未添加V2O5样品Li1.6(Fe0.2Ni0.2Mn0.6)O2.6的194.0 mAh/g.CV测试表明,包覆层的存在有效抑制了材料层状结构的转变及电极与电解液的负反应.","authors":[{"authorName":"王秋艳","id":"3c1066f3-50f8-4531-98f2-0f835929996c","originalAuthorName":"王秋艳"},{"authorName":"徐连义","id":"0d02a887-fe5d-4d5d-bbb3-e32c2b1a89b5","originalAuthorName":"徐连义"},{"authorName":"张艳丽","id":"33dcbaea-909e-4a2f-bd48-2302ddef43aa","originalAuthorName":"张艳丽"},{"authorName":"王晓明","id":"470239ec-9a9d-4ce9-88b4-032230ffb7c6","originalAuthorName":"王晓明"},{"authorName":"谢嫚","id":"4b530849-a7eb-41f8-aa17-7c25adebad05","originalAuthorName":"谢嫚"}],"doi":"","fpage":"530","id":"aae0dac9-724a-4130-8592-d23b7d9809d1","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"82eee741-9ace-4c60-b4b9-7d87d7ae8556","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"1ea3640a-dfc3-4442-a828-4667fcbafcfb","keyword":"V2O5包覆","originalKeyword":"V2O5包覆"},{"id":"ab1039fc-f032-476e-b4f2-ed97921a92ec","keyword":"循环性能","originalKeyword":"循环性能"},{"id":"05b0a2bc-7b39-4598-a23d-39efa0ea66ac","keyword":"Li1.6(Fe0.2Ni0.2Mn0.6)O2.6","originalKeyword":"Li1.6(Fe0.2Ni0.2Mn0.6)O2.6"}],"language":"zh","publisherId":"xyjsclygc201403004","title":"V2O5包覆对Li1.6(Fe0.2Ni0.2Mn0.6)O2.6材料的表面改性","volume":"43","year":"2014"},{"abstractinfo":"采用聚合-热解法制备了Co0.2Zn0.2Mn0.6Fe2O磁性纳米颗粒, 借助热重分析法(TG)、X射线衍射(XRD)、透射电镜(TEM)和振动样品磁强计(VSM)对产物进行了表征. 结果表明, 产物具有尖晶石结构,无杂相, 粒径分布范围在8-15 nm之间. 常温下该材料的剩磁强度和矫顽力分别为0.516和2.388 kA/m","authors":[{"authorName":"刘献明","id":"b1d6734c-03fb-448d-9dfd-5477e42d28de","originalAuthorName":"刘献明"},{"authorName":"付绍云","id":"c065844f-73f6-4ae7-8580-7701b44cb5f1","originalAuthorName":"付绍云"},{"authorName":"肖红梅","id":"fc176245-ecc9-40fa-a94d-4a93008d7b0e","originalAuthorName":"肖红梅"},{"authorName":"李元庆","id":"1a11e248-eeec-449e-9526-cb3064b35502","originalAuthorName":"李元庆"}],"categoryName":"|","doi":"","fpage":"497","id":"74bccfa1-7da3-4d4c-beb0-de7a319d5e47","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"96154898-600b-4fc7-b2e5-486b32c8c50c","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"87608dc0-5bf4-4756-a296-c620a929f9e8","keyword":"Magnetization","originalKeyword":"Magnetization"},{"id":"32dfd501-96d7-4a29-80b8-40d34483bdb7","keyword":"Ferromagnetism","originalKeyword":"Ferromagnetism"}],"language":"zh","publisherId":"0412-1961_2006_5_4","title":"聚合-热解法制备Co0.2Zn0.2Mn0.6Fe2O4纳米颗粒及其表征","volume":"42","year":"2006"},{"abstractinfo":"采用聚合-热解法制备了Co0.2Zn0.2Mn0.6Fe2O4磁性纳米颗粒,借助热重分析法(TG)、X射线衍射(XRD)、透射电镜(TEM)和振动样品磁强计(VSM)对产物进行了表征.结果表明,产物具有尖晶石结构,无杂相,粒径分布范围在8-15 nm之间.常温下该材料的剩磁强度和矫顽力分别为0.516和2.388 kA/m.","authors":[{"authorName":"刘献明","id":"3ac425ab-0155-46a3-ba71-6262fef912fc","originalAuthorName":"刘献明"},{"authorName":"付绍云","id":"288540b0-022b-48a3-b846-2c0ac4f5d0f7","originalAuthorName":"付绍云"},{"authorName":"肖红梅","id":"8930be00-97a7-4101-873e-bbdeb0cf742f","originalAuthorName":"肖红梅"},{"authorName":"李元庆","id":"ee627d52-19f1-4a9b-a50d-45a1e12dd947","originalAuthorName":"李元庆"}],"doi":"10.3321/j.issn:0412-1961.2006.05.010","fpage":"497","id":"5e06ba4a-d2a3-4655-b937-18f65d099aab","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f31b3754-062c-42e9-91cf-be38d9c17046","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"054a9c02-ff56-4f50-bdd8-a96172e426b9","keyword":"聚合-热解法","originalKeyword":"聚合-热解法"},{"id":"08dd7c52-6f24-442b-9ce2-5f16600f76d3","keyword":"磁性","originalKeyword":"磁性"},{"id":"3515c33c-4d46-41a1-a3d8-4df3513e2a5f","keyword":"剩磁强度","originalKeyword":"剩磁强度"},{"id":"72f6d36a-4b36-4f53-9d27-7ef3071fa7f7","keyword":"矫顽力","originalKeyword":"矫顽力"}],"language":"zh","publisherId":"jsxb200605010","title":"聚合-热解法制备Co0.2Zn0.2Mn0.6Fe2O4纳米颗粒及其表征","volume":"42","year":"2006"},{"abstractinfo":"用共沉淀法合成了富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2,并对其表面进行Al2O3包覆.采用XRD、SEM和电化学测试等方法对样品进行表征.结果表明,与Li[Li0.2Mn0.4Fe0.4]O2相比,包覆改性后的Li[Li0.2Mn0.4Fe0.4]O2具有较好的电化学性能,其初始放电容量未明显降低,而循环寿命大大提高,4.0%Al2 O3包覆处理的富锂正极材料经50次充放电循环后,容量衰减量在9%左右.","authors":[{"authorName":"王洪","id":"79fbb8ab-1a3d-49bf-a15d-346ad5413f34","originalAuthorName":"王洪"},{"authorName":"张伟德","id":"f814c868-a3a6-474a-af9a-17d6599cbe08","originalAuthorName":"张伟德"}],"doi":"10.3724/SP.J.1095.2013.20364","fpage":"705","id":"43c56d59-1599-406d-8a59-de36751ea4d5","issue":"6","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"0dbcab27-bb17-4118-958f-22724b5f2ec6","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"d088b7f3-ad6a-4601-be96-1c68c3a2b211","keyword":"表面包覆Li[Li0.2Mn0.4Fe0.4]O2","originalKeyword":"表面包覆Li[Li0.2Mn0.4Fe0.4]O2"},{"id":"1bfbf689-4545-44f1-a57f-c628b4185c33","keyword":"富锂正极材料","originalKeyword":"富锂正极材料"}],"language":"zh","publisherId":"yyhx201306017","title":"富锂正极材料Li[Li0.2Mn0.4Fe0.4]O2的表面包覆改性","volume":"30","year":"2013"},{"abstractinfo":"用低热固相反应合成了纳米Ni0.6Cu0.2Zn0.2Fe2O4尖晶石型铁氧体,并应用FT-IR、DTA-TG、XRD、TEM以及SEM等测试技术对低热固相反应过程和样品进行了研究.FT-IR分析表明,将摩尔比为1:1的金属硝酸盐与柠檬酸研磨30 min能够发生低热固相反应,生成具有单齿配位的金属柠檬酸配合物;当形成干凝胶后,金属与柠檬酸的配合物具有单齿和桥式2种结构;干凝胶在不同焙烧温度下产物的FT-IR和XRD分析结果表明,随着焙烧温度升高,尖晶石结构逐渐发育完整;依据谢乐公式计算和TEM表征证明,干凝胶在350 ℃分解1 h后的粒径为30~40 nm,将此粉体在900 ℃下焙烧2 h后,粒径增大到200~300 nm.","authors":[{"authorName":"杨项军","id":"69115b22-3166-4be6-b118-9792e3d2dfc0","originalAuthorName":"杨项军"},{"authorName":"马志刚","id":"dcc91b5c-5ed4-46a1-97fe-4af83a63c104","originalAuthorName":"马志刚"},{"authorName":"韦群燕","id":"8e7b802e-bad1-44d5-bcdc-5a3aa1571199","originalAuthorName":"韦群燕"},{"authorName":"黄章杰","id":"b0bacbec-1b8a-4362-aa09-746bd99f5e0f","originalAuthorName":"黄章杰"},{"authorName":"陈景","id":"7edee5f9-77dc-47d4-8f6a-8c62581b6ae5","originalAuthorName":"陈景"}],"doi":"10.3969/j.issn.1000-0518.2007.02.014","fpage":"183","id":"caa8a621-7362-485e-8471-99fc8895a5d2","issue":"2","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"70ed8da0-02c6-46c2-921a-e0ec33f6fe64","keyword":"低热固相反应","originalKeyword":"低热固相反应"},{"id":"a73fab25-8a3c-48e0-b604-eae5e3f1ca74","keyword":"溶胶凝胶","originalKeyword":"溶胶凝胶"},{"id":"9b3625bc-48b9-4b85-a767-ec10590fdf4b","keyword":"NiCuZn铁氧体","originalKeyword":"NiCuZn铁氧体"}],"language":"zh","publisherId":"yyhx200702014","title":"低热固相反应制备Ni0.6Cu0.2Zn0.2Fe2O4纳米晶铁氧体","volume":"24","year":"2007"},{"abstractinfo":"研究了La0.6Pr04Fe11.4Si1.6 B0.2合金及其氢化物La0.6 Pr0.4Fe11.4 Si1.6 B0.2Hy的制备工艺与磁热效应.室温XRD分析与SEM成分分析表明La0.6Pr0.4Fe11.4Si1.6B0.2合金主相为NaZn13型立方结构(空间群为Fm-3c),存在富La相(空间群为P4/nmm)与富Fe相.氢化物La0.6Pr0.4Fe11.4 Si1.6B0.2Hy的晶格常数a由合金的1.2295 nm增大到1.2491 nm.DSC测定氢化物的氢含量y约为1.7.磁性测量结果表明:氢化物La0.6Pro.4Fe11.4Si1.6B0.2Hy的居里温度Tc由合金的198 K增至325 K,提高了127 K.在0~1.5 T外磁场下合金与氢化物最大磁熵变-△SMmax均为9.1 J·kg-1·K-1.氢化物La0.6P0.4 F114 Si1.6B02Hy在室温下搁量190 d后物相与磁热效应基本保持不变.","authors":[{"authorName":"葛玉梅","id":"7e71f9f4-1c4e-4709-97c5-62a7423c6e0b","originalAuthorName":"葛玉梅"},{"authorName":"松林","id":"7cedfbb4-e4fd-4fa9-8a4f-91ebece4a774","originalAuthorName":"松林"},{"authorName":"黄焦宏","id":"c5bea85b-1cfb-49f6-be8c-8e356c0563b6","originalAuthorName":"黄焦宏"},{"authorName":"刘翠兰","id":"37f6fa53-e1f9-4413-819e-280ec7a28429","originalAuthorName":"刘翠兰"},{"authorName":"张涛","id":"3bd0e13d-f9dd-41b9-af39-67ac1f7b28e6","originalAuthorName":"张涛"},{"authorName":"特古斯","id":"5630acec-1b95-491d-b2e3-65fa98837474","originalAuthorName":"特古斯"}],"doi":"10.3969/j.issn.0258-7076.2013.04.006","fpage":"543","id":"cd82cba6-8641-4147-9cc8-a926828f3625","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"f238172e-e820-47d9-ae38-0f92a4318cdd","keyword":"NaZn13型合金","originalKeyword":"NaZn13型合金"},{"id":"558a1630-6204-4fcc-a74e-a1ca71ad638f","keyword":"吸氢","originalKeyword":"吸氢"},{"id":"98495e28-bf0c-41e7-8180-63c8e2534bdb","keyword":"居里温度","originalKeyword":"居里温度"},{"id":"e873ccbd-09ec-403f-b051-e9b8d3a8f298","keyword":"磁熵变","originalKeyword":"磁熵变"}],"language":"zh","publisherId":"xyjs201304006","title":"La0.6Pr0.4Fe11.4Si1.6B0.2合金及其氢化物的磁热效应","volume":"37","year":"2013"},{"abstractinfo":"以氨水作为络合剂,采用氢氧化物共沉淀法合成了球形富锂锰基正极材料xLi2 MnO3·(1-x)Li (Ni1/3Co1/3Mn1/3)O2(x=0.2、0.4和0.6),并对合成的不同组分样品材料的化学成分、结构、形貌和电化学性能进行了表征。结果表明,样品材料的化学组分与其理论含量相同,随着x 的增大,材料的粒度变小,在电压范围为2.5~4.6V 条件下进行充放电性能测试时,材料的首次充放电容量随着x 值减小而增加,且当x=0.2时,材料在不同倍率条件下具有最大的放电容量。","authors":[{"authorName":"杨越","id":"7a61300b-7810-4119-b7a8-303f4814bb83","originalAuthorName":"杨越"},{"authorName":"徐盛明","id":"0e4ddf28-16d0-439d-81f2-90acb94675a3","originalAuthorName":"徐盛明"},{"authorName":"翁雅青","id":"5374f8cb-9254-428b-b212-9141d3a0473f","originalAuthorName":"翁雅青"},{"authorName":"黄国勇","id":"d8ac0c7a-e09c-47e6-89fd-79e3ec06e8b3","originalAuthorName":"黄国勇"},{"authorName":"李林艳","id":"d0bebca3-f857-47b7-9157-3b9e8d914998","originalAuthorName":"李林艳"}],"doi":"10.3969/j.issn.1001-9731.2013.19.030","fpage":"2878","id":"1d353830-8cbc-4586-b04c-ce696bb7da22","issue":"19","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a0bd4214-96b4-44b2-966f-a1eb1fbcec5f","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"673f0de2-eaf9-475f-95d6-5810bf92b1ef","keyword":"共沉淀","originalKeyword":"共沉淀"},{"id":"6da956e1-cc32-4670-a0b0-1913da45f33f","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"ff9af759-df1e-4e7c-8dd1-4742bc1a7696","keyword":"xLi2 MnO3 ·(1-x)Li(Ni1/3 Co1/3 Mn1/3 )O2","originalKeyword":"xLi2 MnO3 ·(1-x)Li(Ni1/3 Co1/3 Mn1/3 )O2"}],"language":"zh","publisherId":"gncl201319030","title":"共沉淀法合成球形正极材料xLi2MnO3·(1-x)Li(Ni1/3Co1/3Mn1/3)O2(x=0.2、0.4、0.6)及其性能研究","volume":"","year":"2013"},{"abstractinfo":"分别以Na2CO3和NH3·H2O为沉淀剂和络合剂,用共沉淀法和950℃高温烧结制备Li[Li0.2Mn0.54Ni0.13Co0.1力O2,并用湿化学法将LaF3包覆在Li[Li0.2Mn054Ni0.13Co013]O2正极材料表层.用XRD,SEM,TEM等手段表征了LaF3包覆前后Li[Li0.2Mn0..Ni0.13Co0.13]O2颗粒的微观结构和表面形貌,用电化学测试仪检测样品的充放电性能.结果表明,包覆前后材料的结构没有变化,已经成功地将LaF3包覆在Li[Li02Mn054Ni0.13Co0.13]O2表面;LaF3包覆使Li[Li.2Mn054Ni0』3Co0.13]O2的电化学综合性能明显提高.在5C高倍率下,LaF3-Li[Li0.2Mn10.54Ni013Co0.13]O2的放电比容量比原始Li[Li0.2Mn0.54Ni0.13Co0.13]O2超过了20.3 mAh·g-1.经过100次循环后LaF3-Li[Li0.2Mn054Ni0.13Co0.13]O2的容量保持率高达94.8%,循环稳定性更佳.这些结果表明,LaF3包覆改性是提高Li[Li02Mn0.54Ni0.13Co0.13]Oz电化学性能切实可行的方法.","authors":[{"authorName":"李成冬","id":"08816648-ddbb-461c-8442-f235b700d57b","originalAuthorName":"李成冬"},{"authorName":"姚志垒","id":"1ba19dcc-03fb-47cc-8c2d-362a975c2682","originalAuthorName":"姚志垒"},{"authorName":"李举","id":"f48fa254-feaf-4e1a-a854-0bb35a304584","originalAuthorName":"李举"},{"authorName":"徐进","id":"5a5e68bb-6a23-4712-8cc9-a09e2fa162a4","originalAuthorName":"徐进"},{"authorName":"熊新","id":"fe08d9fe-0984-4be2-94ff-735610f15433","originalAuthorName":"熊新"}],"doi":"10.11901/1005.3093.2016.468","fpage":"394","id":"71725a10-d9cb-4602-9f4f-27b68bf6eb19","issue":"5","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"83033c7d-3b59-4990-b02b-2391c0106471","keyword":"材料合成与加工工艺","originalKeyword":"材料合成与加工工艺"},{"id":"fd5d8abe-4a38-4fc2-bb36-4e9f2816b0e6","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"39386d98-76c8-4885-87fb-f70433e20709","keyword":"共沉淀法","originalKeyword":"共沉淀法"},{"id":"83c58b82-9433-4b4e-b599-ef87d6d462be","keyword":"Li[Li0.2Mn0.54Ni0.13Co0.13]O2","originalKeyword":"Li[Li0.2Mn0.54Ni0.13Co0.13]O2"},{"id":"75f1e33f-bacb-4a68-a266-148c93064383","keyword":"LaF3","originalKeyword":"LaF3"}],"language":"zh","publisherId":"clyjxb201705011","title":"LaF3表面修饰Li[Li0.2Mn0.54Ni0.13Co0.13]O2的制备及其电化学性能","volume":"31","year":"2017"},{"abstractinfo":"Investigation has been carried out to find the effects of Nd substitution and Cu addition on the hydrogen storage properties of AB(5)-type alloy with a multicomponent La0.6M0.4Ni4.8Mn0.2 (M=Y, Nd) system. La0.6Y0.4Ni4.8Mn0.2, which was used in an air-conditioning system, showed poor hysteresis and sloping characteristics, which led to a decrease concerning the coefficient of performance of the system. By the substitution of Nd for Y, the hydrogen storage capacity increased, and the plateau pressure decreased a little, but the hydrogen absorption kinetics decreased dramatically. Cu addition can effectively improve the kinetics of hydride formation without changing the hydrogen storage capacity of La0.6Nd0.4Ni4.8Mn0.2. It has been found that La0.6Nd0.4Ni4.8Mn0.2Cu0.1 alloy showed good hydrogen storage characteristics for metal hydride air-conditioning system. The results showed that, for each component of La0.6M0.4Ni4.8Mn0.2, the effective hydrogen storage capacity increased with decrease of the unit cell parameter c/a and the hydrogen absorption plateau pressure increased with decrease of the parameter a.","authors":[],"categoryName":"|","doi":"","fpage":"414","id":"4e3c900f-9c76-4398-aa25-6c3c88cb9e5f","issue":"4","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[{"id":"9d4d495a-a8a9-43c3-825e-a2486dc82208","keyword":"metal hydride;air-conditioning system;sloping;hysteresis;kinetics;chemical-bond;absorption;stability;kinetics;samples;lani5","originalKeyword":"metal hydride;air-conditioning system;sloping;hysteresis;kinetics;chemical-bond;absorption;stability;kinetics;samples;lani5"}],"language":"en","publisherId":"1005-0302_2004_4_1","title":"Improvement of hydrogen storage properties of La0.6M0.4Ni4.8Mn0.2 alloys","volume":"20","year":"2004"},{"abstractinfo":"采用工业纯原料感应熔炼制备出公斤级La0.6Pr0.4Fe11.4Si1.6B0.2合金,经退火后通过吸氢处理提高其居里温度到室温附近.研究了在1373~1473K温度下经不同时间和温度退火对合金微观组织结构的影响.实验发现在1473K经30 h退火样品的居里温度为202K,在 0~1.5 T变化磁场下的最大磁熵变达8.1~8.6 J/kg.K.在0.13 MPa氢气压力下,经553K吸氢5h氢化处理合金的居里温度为320 K,最大磁熵变达7.7~8.0 J/kg.K.","authors":[{"authorName":"张涛","id":"f28c9a3a-91a9-4767-8a3e-a0e5fa98343e","originalAuthorName":"张涛"},{"authorName":"刘翠兰","id":"1401709f-0282-4de8-81dd-48d3b2474f25","originalAuthorName":"刘翠兰"},{"authorName":"张勇","id":"2a1183eb-29da-446a-a55e-7e9ef522f6ad","originalAuthorName":"张勇"}],"doi":"","fpage":"1305","id":"a160eaac-10e4-4250-8cc3-567ff67bb559","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3795def2-d1d1-495f-81e4-040d15b9b42b","keyword":"感应熔炼","originalKeyword":"感应熔炼"},{"id":"b7e5b0f6-4eff-400d-8d2e-31aad38e9b8c","keyword":"吸氢","originalKeyword":"吸氢"},{"id":"8822e1ca-e8a1-46b5-890c-ad5a322c72d9","keyword":"La(Fe,Si)系合金","originalKeyword":"La(Fe,Si)系合金"},{"id":"4fe0dc97-a154-4848-a464-d124219bc4f4","keyword":"磁热性能","originalKeyword":"磁热性能"}],"language":"zh","publisherId":"xyjsclygc201705026","title":"La0.6Pr0.4Fe11.4Si1.6B0.2合金及其氢化物磁热性能研究","volume":"46","year":"2017"}],"totalpage":5789,"totalrecord":57889}