{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以\"壳/核\"型碳包覆铁(Fe(C))纳米颗粒为填料、水性丙烯酸树脂为基体,制备了纳米复合电磁波吸收涂料.采用不同含量的十二烷基苯磺酸钠(SDBS)对纳米颗粒改性,提高了纳米颗粒在基体中的分散性.选用吸收剂填充量为25%(质量分数)的涂料,测定了不同厚度涂层的电磁波吸波性能.涂层具有很好的吸波性能,当厚度为5mm时,反射损耗峰值为-17.2dB,吸收带宽为3.2GHz(7~10.2GHz).首次用实验结果证明了传输线理论对铁磁性纳米颗粒吸波性能的模拟结果.","authors":[{"authorName":"陈祥凤","id":"0dc2cfa0-ee09-4d20-a86d-7a363645caaa","originalAuthorName":"陈祥凤"},{"authorName":"黄昊","id":"0addaf5b-0a82-41f5-8629-2f00b96eada0","originalAuthorName":"黄昊"},{"authorName":"吕波","id":"b7657862-5f0d-4e09-b497-7ef09f1a803e","originalAuthorName":"吕波"},{"authorName":"李璞","id":"e74df97c-82a0-4776-aeed-f29fd070e870","originalAuthorName":"李璞"},{"authorName":"刘顺华","id":"32997efe-d761-4b85-8f89-04c8be9e67d4","originalAuthorName":"刘顺华"},{"authorName":"段玉平","id":"95c89634-d23d-4da0-be06-47155b360b5a","originalAuthorName":"段玉平"},{"authorName":"董星龙","id":"d51863be-9f1d-4977-8756-d6f6db3b5ba8","originalAuthorName":"董星龙"}],"doi":"","fpage":"45","id":"fd3c17f4-3219-491b-b22f-acc2a5e0dc68","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5d9e5bb3-2e68-4d24-8489-6cb2767b2797","keyword":"碳包覆铁纳米颗粒","originalKeyword":"碳包覆铁纳米颗粒"},{"id":"d04af95b-2786-49e4-a120-3372e3e71d10","keyword":"水性丙烯酸树脂涂料","originalKeyword":"水性丙烯酸树脂涂料"},{"id":"9bd312d5-3b48-4b8a-a1a4-6b10899c13c6","keyword":"十二烷基苯磺酸钠","originalKeyword":"十二烷基苯磺酸钠"},{"id":"7d83895b-3a1a-4570-b3aa-4891e7eff99e","keyword":"吸波性能","originalKeyword":"吸波性能"}],"language":"zh","publisherId":"cldb200910014","title":"碳包覆铁/丙烯酸树脂水性纳米复合涂料的制备及电磁波吸收性能*","volume":"23","year":"2009"},{"abstractinfo":"对掺杂硝酸铁和硝酸镍复合炸药前驱体,采用爆轰法合成碳包覆铁镍合金纳米颗粒.通过XRD,TEM,XRF,VSM等方法对合成的碳包覆合金纳米颗粒的形貌特征、结构组成及磁性行为进行了分析表征.结果表明,通过有效调整前驱体中金属源材料比例和碳材料组成,可爆轰合成较为完美的核壳结构碳包覆铁镍纳米颗粒,所得球形的纳米颗粒尺寸主要分布在10~60 nm范围内且分散性较好,组成核主要由不同比例的铁镍元素构成,外壳层主要由石墨碳构成;由室温下磁性分析可知,该纳米颗粒表现出良好的超顺磁性.","authors":[{"authorName":"李晓杰","id":"6d0e2d09-2b88-4bdb-904d-dc31d481fb87","originalAuthorName":"李晓杰"},{"authorName":"罗宁","id":"89cba1b4-7bb5-444f-8340-ef5f1bba46ff","originalAuthorName":"罗宁"},{"authorName":"闫鸿浩","id":"95c41aee-5149-4e08-ba58-f24cbb503d03","originalAuthorName":"闫鸿浩"},{"authorName":"王小红","id":"fed2ba84-ce4d-4baa-a6ce-d09f0a9b24e4","originalAuthorName":"王小红"}],"doi":"","fpage":"429","id":"ed9ba27e-053f-4021-a415-a74ce15cc42d","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"08a2e966-19eb-49a8-ae1f-a73c4b117c78","keyword":"爆轰合成","originalKeyword":"爆轰合成"},{"id":"aab08be7-a76b-49ec-8c7a-680c84714038","keyword":"碳包覆","originalKeyword":"碳包覆"},{"id":"f584dfcc-f0d8-44ae-bd3f-7ff798882cf7","keyword":"铁镍合金纳米颗粒","originalKeyword":"铁镍合金纳米颗粒"},{"id":"9daaf4a7-5b1e-4446-b8c2-3fbe8a9cb753","keyword":"核壳结构","originalKeyword":"核壳结构"},{"id":"e671ccc7-91fa-491f-bf36-964d3d769593","keyword":"磁性行为","originalKeyword":"磁性行为"}],"language":"zh","publisherId":"xyjsclygc2010z1103","title":"爆轰法制备碳包覆铁镍合金纳米颗粒及其表征","volume":"39","year":"2010"},{"abstractinfo":"利用钨电极电弧法制备了碳包覆铁纳米微粒,采用酸洗加磁选的方法对初产物进行了纯化.用透射电子显微镜、X射线衍射仪和振动样品磁强计对产物的形貌结构、物相组成以及磁性能进行了表征分析.结果表明:该纯化方法可以有效地去除产物中未被包覆或碳包覆不完整的铁颗粒及各类碳杂质,纯化后的产物以包覆多层碳膜的铁纳米颗粒为主;粉体的磁滞回线也表明经纯化后产物的磁性能得到了明显提高.","authors":[{"authorName":"刘同冈","id":"ce8bdcc3-a14c-4cc2-b21a-944ec1488197","originalAuthorName":"刘同冈"},{"authorName":"刘书进","id":"b4b7308f-21ff-494f-9294-aae0a34220cc","originalAuthorName":"刘书进"},{"authorName":"吴建","id":"8fd37cba-feca-474f-a95d-75d3424dac8e","originalAuthorName":"吴建"},{"authorName":"杨志伊","id":"0b92179e-b2f4-4e8e-a90f-f373272759ac","originalAuthorName":"杨志伊"}],"doi":"10.3969/j.issn.1001-4381.2010.05.014","fpage":"64","id":"d9b85458-16fa-4cc1-afc7-9b5ace3cf800","issue":"5","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"c0182c9e-d2fd-4690-8b91-cc98120b9d88","keyword":"碳包覆","originalKeyword":"碳包覆"},{"id":"9fc94344-e790-4dfc-bfe2-a195c7171e76","keyword":"铁纳米微粒","originalKeyword":"铁纳米微粒"},{"id":"6ce2d8a1-5484-4890-a42a-2d0555237add","keyword":"制备","originalKeyword":"制备"},{"id":"f73c9886-ead5-43fe-9f2d-7f0cf2d78fdc","keyword":"纯化","originalKeyword":"纯化"}],"language":"zh","publisherId":"clgc201005014","title":"电弧法制备碳包覆铁纳米微粒的纯化研究","volume":"","year":"2010"},{"abstractinfo":"以淀粉为碳源,通过热解炭化铁/淀粉复合物,成功制备出碳包覆铁(Fe@C)纳米胶囊.在这一过程中淀粉有双重作用,既是碳源又是铁纳米颗粒的稳定剂.采用透射电镜、X射线衍射及振动样品磁强计研究了(Fe@C)纳米胶囊的结构和磁学性能.发现Fe@C纳米胶囊具有完美的铁核(bcc-Fe)/碳壳(石墨层片)包覆结构,其尺寸介于30 nm~40nm之间;Fe@C纳米胶囊在室温下有低的剩磁比(Mr/Ms=0.11),表明它在室温下具有超顺磁性.","authors":[{"authorName":"邱介山","id":"127bb1a6-a6aa-4555-9aca-23e03c98fd06","originalAuthorName":"邱介山"},{"authorName":"孙玉峰","id":"a1f9e152-5e6e-4265-9c7e-25f3d5bab253","originalAuthorName":"孙玉峰"},{"authorName":"周颖","id":"71b8f676-6af5-44d3-be73-6c3d93f452f8","originalAuthorName":"周颖"},{"authorName":"孙天军","id":"ddd5e6b1-779d-4715-b537-fd628b18a2c5","originalAuthorName":"孙天军"},{"authorName":"李杞秀","id":"fc5dfeb6-9e78-4923-9e0a-f2f8b76d5621","originalAuthorName":"李杞秀"}],"doi":"10.3969/j.issn.1007-8827.2006.03.002","fpage":"202","id":"792a68fa-9e13-4969-8044-bbae058c3463","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"406d2318-b097-4b27-81fc-eb0d9885a4a9","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"be621150-deae-4c5e-b931-1486217c0f0e","keyword":"Fe(NO3)3","originalKeyword":"Fe(NO3)3"},{"id":"c44fb1b0-4bce-4308-83cd-9e34be0d74d0","keyword":"碳包覆","originalKeyword":"碳包覆"},{"id":"51632f93-8182-4ce8-90fc-a935fac66df1","keyword":"磁性能","originalKeyword":"磁性能"}],"language":"zh","publisherId":"xxtcl200603002","title":"淀粉基碳包覆铁纳米胶囊的合成及其磁学性能","volume":"21","year":"2006"},{"abstractinfo":"用直流碳弧法制备碳包铁纳米颗粒,应用透射电镜(TEM)、X射线衍射分析(XRD)和穆斯堡尔谱学进行研究.结果表明,当阳极复合棒中为纯铁粉加石墨粉时,出现3种碳包铁纳米颗粒:α-Fe,渗碳体(Fe3C)和奥氏体;当阳极复合棒中为Fe2O3加石墨粉时,出现4种碳包铁纳米颗粒:α-Fe,渗碳体,奥氏体和FeO.它们的尺寸大小在5~50nm范围.","authors":[{"authorName":"郑裕芳","id":"73a6420c-c0b4-4c26-a24f-2f5fda920a46","originalAuthorName":"郑裕芳"},{"authorName":"余正方","id":"b1c1bcb5-592d-4f5e-9b07-f99286528867","originalAuthorName":"余正方"},{"authorName":"吴奕初","id":"0c4c1545-1c21-4853-88a2-0f9c6a64578f","originalAuthorName":"吴奕初"},{"authorName":"张海燕","id":"42c255fb-b243-487c-acfc-66bf3438f432","originalAuthorName":"张海燕"},{"authorName":"彭少麒","id":"b58d9c07-a3c3-4060-aa39-bb3edf392d3e","originalAuthorName":"彭少麒"}],"doi":"","fpage":"447","id":"a4be169f-baa8-48e0-953e-3777e53cf91a","issue":"4","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d980d883-4fd5-44b0-b8fd-88637b8e0648","keyword":"碳弧法","originalKeyword":"碳弧法"},{"id":"0185ca60-543e-45e6-8420-f1e1e1a68412","keyword":"碳包铁纳米颗粒","originalKeyword":"碳包铁纳米颗粒"},{"id":"d1010478-fde4-4175-9d61-626a8d1c683b","keyword":"穆斯堡尔谱学","originalKeyword":"穆斯堡尔谱学"}],"language":"zh","publisherId":"gncl200004042","title":"碳弧法制备碳包铁纳米颗粒的研究","volume":"31","year":"2000"},{"abstractinfo":"以二茂铁为前驱体,氢氧混合气体为爆源,在爆轰管内对碳包覆铁纳米颗粒进行合成.研究了初始反应温度及热处理对产物粒子的影响.通过XRD、TEM及VSM对爆轰产物进行了检验.结果表明,碳包覆纳米颗粒呈球形或椭球形.随着反应温度的升高,碳包覆纳米铁的晶粒尺寸为30~50 nm并且趋于均匀化,说明初始反应温度的高低直接影响生成颗粒的大小.通过不同温度热处理后爆轰产物的磁滞回线分析,饱和磁化强度(Ms)随着热处理温度的升高而降低,磁滞回线为比较“瘦”的形状,但仍然具有较高的磁矫顽力,表明合成的碳包覆纳米材料呈现出硬磁性和顺磁性双重性质.","authors":[{"authorName":"闫鸿浩","id":"f062107f-a365-4921-bdaf-f49e042b30a0","originalAuthorName":"闫鸿浩"},{"authorName":"浑长宏","id":"d506474a-41ff-4ab2-9e74-1288282197a4","originalAuthorName":"浑长宏"},{"authorName":"李晓杰","id":"43751f54-8024-4a70-b8a6-f815897c5073","originalAuthorName":"李晓杰"},{"authorName":"赵铁军","id":"21868b21-0ed1-4b37-a175-a7d222220c2f","originalAuthorName":"赵铁军"}],"doi":"","fpage":"2152","id":"00616214-3f0d-4ff5-b3e9-1934ae575b36","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"542b2766-2e5c-4161-99be-03d20c52b7fd","keyword":"气相爆轰","originalKeyword":"气相爆轰"},{"id":"7a2d2f16-90a4-4cfc-bbda-5a52e201aa57","keyword":"二茂铁","originalKeyword":"二茂铁"},{"id":"4dcb8381-a989-4666-8e2b-a03c8283f39e","keyword":"氢氧气体","originalKeyword":"氢氧气体"},{"id":"30c532d8-d2e0-4cb8-bdc7-6a777f272ba7","keyword":"爆轰管","originalKeyword":"爆轰管"}],"language":"zh","publisherId":"xyjsclygc201509015","title":"不同爆轰管温度下氢氧气相爆轰合成碳包铁纳米颗粒研究","volume":"44","year":"2015"},{"abstractinfo":"选用实验室自制的碳包覆纳米铜颗粒(Cu@C)为导热填料,以α,ω-二羟基聚二甲基硅氧烷为基体,采用机械共混法制备了碳包覆纳米铜颗粒/室温硫化(Cu@C/RTV)硅橡胶导热复合材料.通过透射电子显微镜、BET法、热导率测试仪、热重分析仪、万能材料试验机及邵氏硬度计等方法和手段,完成Cu@C纳米颗粒填料的微观形貌分析和比表面积测定,并研究了Cu@C填料在低填充量下(<30%)(质量分数,下同)对于Cu@C/RTV硅橡胶导复合材料热导率、热稳定性及力学性能的影响.结果表明,Cu@C纳米颗粒为球形、包覆型核壳结构,平均粒径在50 nm左右,其比表面积为69.66 m2/g.Cu@C/RTV硅橡胶导热复合材料的热导率随着Cu@C纳米颗粒填充量的增加而增大;填充量为30%时,复合材料的热导率可达2.41 W/mK;加入Cu@C纳米颗粒填料能够将RTV硅橡胶的热分解起始温度提高到422℃,并延缓其最终分解温度至625℃;随着Cu@C/RTV硅橡胶导热复合材料中Cu@C纳米颗粒填充量的增加,复合材料的拉伸强度和断裂伸长率呈下降趋势,而100%定伸应力和硬度则呈增大趋势.","authors":[{"authorName":"吴其光","id":"92dd9c62-322f-4d4d-a9b2-02103fd6a8b8","originalAuthorName":"吴其光"},{"authorName":"张海燕","id":"f4f3331e-9adf-4e57-9035-df18d6d36d7b","originalAuthorName":"张海燕"},{"authorName":"张琇滨","id":"95f24add-c4ff-4514-afde-e559c59047a0","originalAuthorName":"张琇滨"}],"doi":"","fpage":"142","id":"4e9e9b80-629f-4494-b230-9ba9c371719c","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b6cfa956-d689-48e4-b904-50a129ca626c","keyword":"碳包覆纳米铜颗粒","originalKeyword":"碳包覆纳米铜颗粒"},{"id":"c0870e4a-3769-46ad-bb43-964e6634aab4","keyword":"室温硫化硅橡胶","originalKeyword":"室温硫化硅橡胶"},{"id":"e4878f4a-918d-4dce-b495-1f95bb8bbc31","keyword":"导热复合材料","originalKeyword":"导热复合材料"},{"id":"8e2d58fb-88ec-4617-945e-8ed69be46e20","keyword":"热导率","originalKeyword":"热导率"},{"id":"d04ed4d8-13dc-409b-bbe4-d96aa873b60c","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gfzclkxygc201601027","title":"碳包覆纳米铜颗粒/硫化硅橡胶导热复合材料的制备及性能","volume":"32","year":"2016"},{"abstractinfo":"采用激光感应复合加热蒸发合成法,以CH4为碳源,制备了大量具有壳核结构的纳米碳包铁颗粒,通过透射电子显微镜(TEM)、X射线衍射分析仪(XRD)、能量弥散X射线分析(EDX)等对颗粒进行了表征,并利用动态磁滞回线测定仪测定了纳米颗粒的磁化强度等磁性能.结果表明,利用该方法制备的碳包铁纳米颗粒的平均粒径为25nm,表面碳层厚度为5nm左右,具有铁磁性能.纳米碳包铁颗粒将作为磁性载体在医学细胞分离、细胞染色、靶向用药、定向治疗、肿瘤热疗等方面具有广阔的应用前景.","authors":[{"authorName":"刘少炎","id":"f1a595c9-7283-4645-971e-997bb3261d6a","originalAuthorName":"刘少炎"},{"authorName":"胡军辉","id":"09451425-e3cc-463a-b927-82e3b6f25d41","originalAuthorName":"胡军辉"},{"authorName":"谢长生","id":"1dee6e20-5da4-4b89-a11e-d7eae1cbd992","originalAuthorName":"谢长生"}],"doi":"","fpage":"232","id":"615f06d9-a4d5-432c-9677-12fc9cca24be","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"fbbd4438-677f-4338-8154-2364af6cee42","keyword":"激光感应","originalKeyword":"激光感应"},{"id":"3707cbed-91e9-4172-9025-36a30954cbb0","keyword":"碳包铁","originalKeyword":"碳包铁"},{"id":"8aa3071e-dc7f-48b2-9ff4-d4529c45753d","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"359c53a0-2212-4759-b11e-cea047645fca","keyword":"磁性载体","originalKeyword":"磁性载体"}],"language":"zh","publisherId":"cldb2006z2068","title":"纳米碳包铁磁性颗粒的制备及表征","volume":"20","year":"2006"},{"abstractinfo":"以简单金属前躯体为原料通过快速热解法制备炭包覆纳米金属磁性颗粒,通过透射电镜、X-射线衍射、热重-示差扫描同步热分析及振动样品磁强计等对产物形貌、结构、成分与磁性能进行表征.结果表明:采用该方法制备的炭包覆纳米金属磁性颗粒形状为近球形颗粒,粒径均一,其中炭包覆镍纳米磁性颗粒的粒径集中在10nm~30nm范围,炭包覆铁纳米磁性颗粒粒径则在50nm~60nm范围;所制炭包覆纳米金属磁性颗粒在室温下具有顺磁性,其磁性能随金属颗粒含量的变化而改变.该方法有望发展成一种工艺简单,可进行连续工业化生产炭包覆纳米金属磁性颗粒的方法.","authors":[{"authorName":"马辰","id":"496496de-daf5-457a-88e0-f09b0036aefb","originalAuthorName":"马辰"},{"authorName":"罗彬","id":"87964f37-6345-4ebe-9b96-5fe2e4735c4e","originalAuthorName":"罗彬"},{"authorName":"宋怀河","id":"3de05e77-2333-4bd5-88e0-f9264db269e5","originalAuthorName":"宋怀河"},{"authorName":"智林杰","id":"9b6c0eb2-9827-44b2-816c-33648a6ec834","originalAuthorName":"智林杰"}],"doi":"10.1016/S1872-5805(09)60028-7","fpage":"199","id":"bed837e7-87ff-46a7-a62f-ef0dc5f54123","issue":"3","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"970a762d-a905-479a-a09f-ea3b301feb40","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"5a160fa7-47ed-4331-9417-d6b86c66160e","keyword":"炭包覆","originalKeyword":"炭包覆"},{"id":"10db09c4-8797-4866-8dc8-98b4f8cad69c","keyword":"磁性纳米颗粒","originalKeyword":"磁性纳米颗粒"},{"id":"828a281f-d6c5-4fcd-817c-f800e4a72b4f","keyword":"快速热解法","originalKeyword":"快速热解法"}],"language":"zh","publisherId":"xxtcl201003007","title":"快速热解法制备炭包覆纳米金属磁性颗粒","volume":"25","year":"2010"},{"abstractinfo":"综述了近年来国内外对纳米颗粒进行表面改性所采用的包覆方法,包括固相法和沉淀法、溶胶-凝胶法、化学镀法、聚合物包裹法等液相化学法.主要从包覆机理、表征方法、包覆方法及应用进行综述,指出了这些包覆方法的技术关键及优缺点,重点介绍了溶胶-凝胶包覆方法及其应用.并展望了包覆技术的发展前景.","authors":[{"authorName":"程花蕾","id":"fc5c99b5-d275-4623-b85e-f3902f3e7745","originalAuthorName":"程花蕾"},{"authorName":"杜红亮","id":"07cd3b5a-b4c9-4cb9-b397-d1bec7f4878d","originalAuthorName":"杜红亮"},{"authorName":"周万城","id":"09935f1f-d05a-4f63-9a70-c88e0e756f9f","originalAuthorName":"周万城"},{"authorName":"罗发","id":"d683f7f3-422e-440c-b19e-e4f05da1f554","originalAuthorName":"罗发"},{"authorName":"朱冬梅","id":"52d17630-d485-4bf9-968e-21592f47c26f","originalAuthorName":"朱冬梅"}],"doi":"","fpage":"130","id":"d2454d43-1702-4e7c-aede-83305eaa79ce","issue":"15","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"954a90a7-ad9b-40bd-970f-1fb5397fbf7f","keyword":"包覆","originalKeyword":"包覆"},{"id":"133d6ae9-2bba-4c67-81ae-44fa4db770fb","keyword":"表征","originalKeyword":"表征"},{"id":"76a53181-451b-402c-b57a-cd78d9073875","keyword":"溶胶凝胶法","originalKeyword":"溶胶凝胶法"},{"id":"10877e63-e4d5-4ea6-b128-4a17c80f04fd","keyword":"芯-壳结构","originalKeyword":"芯-壳结构"}],"language":"zh","publisherId":"cldb201215025","title":"纳米颗粒包覆方法的研究进展及其应用","volume":"26","year":"2012"}],"totalpage":5322,"totalrecord":53215}