{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对Cu2O与Al进行热力学分析后将其粉末压制成块,测试了不同温度下反应的热分析曲线,并对反应后的试样进行X射线衍射分析.结果表明:Cu2O-Al体系化学反应包括3个阶段,即第1阶段体系温度T<910 K,有少量Al2O3和Cu生成;第2阶段体系温度为910 K≤T<1103 K,Cu2O-Al体系未发生化学反应;第3阶段体系温度为1103 K≤T≤1373 K,Cu2O-Al体系发生化学反应,其产物为Cu、Al2O3及CuAlO2.","authors":[{"authorName":"王武孝","id":"cbc8a44a-5692-460d-b0ca-2e6b2649665f","originalAuthorName":"王武孝"},{"authorName":"邢建东","id":"58f62096-8d01-4955-ab5f-573d1f39a579","originalAuthorName":"邢建东"},{"authorName":"金志新","id":"c56f9101-2856-4322-b2d8-0fb9143d457e","originalAuthorName":"金志新"}],"doi":"","fpage":"679","id":"aa6cd690-ac35-4e63-906c-55eacdfee7fb","issue":"z3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"206ff8a8-06d3-403b-b38e-ff6e179b6fe1","keyword":"Cu2O-Al体系","originalKeyword":"Cu2O-Al体系"},{"id":"3e99b1e2-f4ff-4b75-ab33-25e2061d2813","keyword":"反应机理","originalKeyword":"反应机理"},{"id":"ae3618da-3e87-44f1-9554-5cfc5f9544b1","keyword":"热爆","originalKeyword":"热爆"},{"id":"e2515b1b-cbe2-47a1-8045-4c500325980a","keyword":"Al2O3/Cu复合材料","originalKeyword":"Al2O3/Cu复合材料"}],"language":"zh","publisherId":"xyjsclygc2007z3163","title":"Al2O3/Cu复合材料制备中的Cu2O-Al体系化学反应","volume":"36","year":"2007"},{"abstractinfo":"在对Cu2O-A1体系进行热力学分析的基础上,测试了Cu2O与Al粉末压块在不同介质温度下反应的热分析曲线,并对反应后的试样进行了X射线衍射分析.结果表明.Cu2O-Al体系反应随介质温度升高可分为3个不同阶段:第1阶段,体系温度T<910 K,有少量Al2O3和Cu生成:第2阶段.体系温度为910 K≤T<1103 K,Cu2O-Al体系未发生化学反应:第3阶段.体系温度为1103 K≤T≤1373 K,Cu2O-Al体系发生化学反应.其产物为Cu,Al2O3及CuAlO2.","authors":[{"authorName":"王武孝","id":"2afc1ff7-eb55-453f-ad4a-3051fdcbabf3","originalAuthorName":"王武孝"},{"authorName":"袁森","id":"0b2122dc-f574-4b64-b1a1-fa094ecaf512","originalAuthorName":"袁森"},{"authorName":"夏明许","id":"d8e1d167-78f5-402a-94e1-46e52c92b81d","originalAuthorName":"夏明许"},{"authorName":"马红萍","id":"e068c5ca-17e2-4b5b-ad9c-d584bea79a84","originalAuthorName":"马红萍"}],"categoryName":"|","doi":"","fpage":"403","id":"62c9cf7b-8fa5-4686-9def-ec899b8e5670","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"5b84e0b9-0ffc-4b29-bb89-0dc350bf26eb","keyword":"Cu2O-Al体系","originalKeyword":"Cu2O-Al体系"},{"id":"1af762b2-665f-40eb-a040-4607f5770d69","keyword":"null","originalKeyword":"null"},{"id":"0d40c0f5-21c0-491d-b063-2d14e3cda6bb","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2002_4_23","title":"Cu2O-Al体系的化学反应机理","volume":"38","year":"2002"},{"abstractinfo":"在对Cu2O-A1体系进行热力学分析的基础上,测试了Cu2O与Al粉末压块在不同介质温度下反应的热分析曲线,并对反应后的试样进行了X射线衍射分析.结果表明.Cu2O-Al体系反应随介质温度升高可分为3个不同阶段:第1阶段,体系温度T<910 K,有少量Al2O3和Cu生成:第2阶段.体系温度为910 K≤T<1103 K,Cu2O-Al体系未发生化学反应:第3阶段.体系温度为1103 K≤T≤1373 K,Cu2O-Al体系发生化学反应.其产物为Cu,Al2O3及CuAlO2.","authors":[{"authorName":"王武孝","id":"6ec09151-3ed8-4649-9e99-d4c7bcc83859","originalAuthorName":"王武孝"},{"authorName":"袁森","id":"c7f69736-c47b-40b9-944d-863148c41c71","originalAuthorName":"袁森"},{"authorName":"夏明许","id":"af747c61-96c7-4678-8e9c-4c5f24a8b01c","originalAuthorName":"夏明许"},{"authorName":"马红萍","id":"759aa70d-e6e3-4d3a-addb-6de3b60fda75","originalAuthorName":"马红萍"}],"doi":"10.3321/j.issn:0412-1961.2002.04.015","fpage":"403","id":"d21fad60-97cd-42b2-96c4-7718dbb6addb","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"95456bba-199b-4285-9d72-bfd1ea86c623","keyword":"Cu2O-Al体系","originalKeyword":"Cu2O-Al体系"},{"id":"e77f1068-1685-4ac5-aa71-3c75baafbb06","keyword":"反应机理","originalKeyword":"反应机理"},{"id":"484d946b-60cf-4d65-be90-b79a6ab5e747","keyword":"热爆.Al2O3/Cu复合材料","originalKeyword":"热爆.Al2O3/Cu复合材料"}],"language":"zh","publisherId":"jsxb200204015","title":"Cu2O-Al体系的化学反应机理","volume":"38","year":"2002"},{"abstractinfo":"用热还原生成法制备了自生Al2O3-Cu复合材料,并从化学反应热力学和动力学的角度,对Cu2O-Al二元体系反应过程进行了研究.同时通过SEM、X-ray等手段.对所得的材料进行了分析,结果表明,用此方法制备此复合材料是可行的.","authors":[{"authorName":"胡锐","id":"5952980c-f13f-4d32-aa36-a016925ecca8","originalAuthorName":"胡锐"},{"authorName":"商宝禄","id":"1f2350e6-5755-49b8-baf6-731ce2508c1c","originalAuthorName":"商宝禄"},{"authorName":"周尧和","id":"b23be261-5dfb-44a8-92a5-0167b78a7930","originalAuthorName":"周尧和"}],"doi":"","fpage":"58","id":"7019b110-fbea-491d-9c95-58a2d7fd2b7f","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"c8d61d7c-bb2e-4d96-80f8-0da44cf36b6e","keyword":"Al2O3弥散硬化铜","originalKeyword":"Al2O3弥散硬化铜"},{"id":"c7fa0faf-5ff0-431b-94ad-1d5a521b67a6","keyword":"自生复合材料","originalKeyword":"自生复合材料"},{"id":"154cfdda-412a-431b-a6fc-282cf06b60b0","keyword":"热还原法","originalKeyword":"热还原法"}],"language":"zh","publisherId":"cldb200001021","title":"用热还原生成法制备自生Al2O3/Cu基复合材料","volume":"14","year":"2000"},{"abstractinfo":"An innovative in situ reaction technique is developed for the synthesis of Al(2)O(3)/Al and Al(2)O(3)/Cu composites. This technique provides a new approach overcoming the problems of loss and agglomeration of reinforcement particles when the particles are added directly into their matrixes by a conventional ex situ technique. The experimental results have shown that the presence of network Al(Cu)-CuAl(2) eutectic, which is detrimental not only to the fracture toughness, but also to the stability of the microstructure, can be reduced from the final product by introducing two or more oxides into the synthesis. Moreover, the network CuAl(2) phase can be eliminated entirely only by changing Al matrix into Cu matrix when Al amount is not excess in the Al-CuO preforms. The mechanisms of formation or absence of Al(Cu)-CuAl(2) eutectic in the Al(2)O(3)/Al and Al(2)O(3)/Cu composites are explained based upon thermodynamics of the systems. The modification of the microstructures in the in situ synthesis Al(2)O(3)/Al, Al(2)O(3)/Al-Si-Cu, Al(2)O(3)/Al-Si-Cu-Mn and Al(2)O(3)/Cu composites can be understood in the light of thermodynamics. (C) 2010 Elsevier B.V. All rights reserved.","authors":[],"categoryName":"|","doi":"","fpage":"261","id":"ba3ecb76-046a-4618-a5a5-48c0a818b6e2","issue":"42737","journal":{"abbrevTitle":"JOAAC","id":"de8b3eb8-d3c1-4889-812c-8ad260eabadc","issnPpub":"0925-8388","publisherId":"JOAAC","title":"Journal of Alloys and Compounds"},"keywords":[{"id":"056ea90f-bfdf-426f-9a2e-0019fe3415ee","keyword":"Microstructure;Aluminum and copper matrix composites;In situ;synthesis;Al(2)O(3) particle;microstructure;aluminum;nanocomposite","originalKeyword":"Microstructure;Aluminum and copper matrix composites;In situ;synthesis;Al(2)O(3) particle;microstructure;aluminum;nanocomposite"}],"language":"en","publisherId":"0925-8388_2010_42737_8","title":"In situ Al(2)O(3) particle-reinforced Al and Cu matrix composites synthesized by displacement reactions","volume":"494","year":"2010"},{"abstractinfo":"考察了Al/H2O2体系对甲基橙(MO)的氧化降解行为,探讨了Al粉、H2O2投加量、溶液初始pH以及共存阴离子等因素对MO降解的影响,并利用荧光光谱法通过证实·OH自由基的形成对降解机理进行了初步探讨.结果表明,Al/H2O2体系对MO的降解受溶液pH影响较大,在初始pH 3.0,铝粉投加量为4.8 g·L-1,H2O2投加量为7.2 mmol· L-1,对于含MO 20 mg·L-1的染料废水,10 h MO降解率可达95.2%,而当初始pH>3.5时,MO的降解被强烈抑制.无机阴离子(Cl-、SO42_、NO;)单独存在时,对Al/H2O2体系降解MO影响较小,MO降解率仍可达90.0%以上.无机阴离子(Cl-、SO42-、NO3-)共同存在时,对Al/H2O2体系降解MO具有叠加效应,MO降解率仅达60.0%左右.Al/H2O2体系重复利用性能良好,对MO降解经7个周期后,降解率仍可达92.0%.降解机理研究表明,Al/H2O2体系氧化降解MO过程中,·OH发挥了主要作用.","authors":[{"authorName":"张思敬","id":"ebf85491-1f98-4b26-a7d9-e82e0b20dda7","originalAuthorName":"张思敬"},{"authorName":"敖凤娇","id":"c1b963d5-8b61-4396-9082-ed6b84cc3076","originalAuthorName":"敖凤娇"},{"authorName":"陈双莉","id":"528046d5-39b0-46f0-829f-205764b8049a","originalAuthorName":"陈双莉"}],"doi":"10.7524/j.issn.0254-6108.2017.04.2016081102","fpage":"695","id":"082ce7d3-8a0e-4641-9749-eaf7c579c6c6","issue":"4","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"922a654c-036c-4933-9c99-dda62bcfb04b","keyword":"Al","originalKeyword":"Al"},{"id":"ba2b1ae9-68c1-4e83-a837-a0ceaffc636e","keyword":"H2O2","originalKeyword":"H2O2"},{"id":"97eedd93-3f75-4ce4-a8eb-73fac10ad5a3","keyword":"氧化降解","originalKeyword":"氧化降解"},{"id":"6a1234bc-b7cd-444a-a659-f9dc6828a7bd","keyword":"MO","originalKeyword":"MO"},{"id":"f223514c-c7a1-4be9-a697-94ea3d2a9ba1","keyword":"降解机理","originalKeyword":"降解机理"}],"language":"zh","publisherId":"hjhx201704001","title":"Al/H2O2体系氧化降解甲基橙","volume":"36","year":"2017"},{"abstractinfo":"以Cu(NO3)2为原料,乙二醇为溶剂和还原剂,制备了不同形貌的纳米Cu2O.通过X射线衍射,透射电子显微镜对产物进行了表征,并用热分析法考察了纳米Cu2O对高氯酸铵热分解的催化作用.结果表明,在乙二醇体系中少量水的加入对产物的形貌有着重要的影响.当加入少量水时,产物形貌由不规则状变为短棒状.不同形貌的纳米Cu2O均能强烈催化高氯酸铵的热分解,分散性较好的Cu2O使高氯酸铵的高温分解温度下降了约104℃,分解放热量由590J/g增至1450J/g.","authors":[{"authorName":"朱俊武","id":"f4f86352-c946-4261-b615-bb01541b1949","originalAuthorName":"朱俊武"},{"authorName":"王艳萍","id":"8fa008f4-bc7f-4618-bc1c-fa52efa8cead","originalAuthorName":"王艳萍"},{"authorName":"张莉莉","id":"4202a730-34e5-4b51-85a4-00cf488f9515","originalAuthorName":"张莉莉"},{"authorName":"杨绪杰","id":"18fb7968-bc66-4f83-b8f3-b04fae795696","originalAuthorName":"杨绪杰"},{"authorName":"陆路德","id":"e6265b97-8bb3-49bb-a7af-b6a0e685f265","originalAuthorName":"陆路德"},{"authorName":"汪信","id":"c501c934-5052-4cc1-a161-6e4ea7992b4f","originalAuthorName":"汪信"}],"doi":"10.3969/j.issn.1673-2812.2006.02.010","fpage":"209","id":"aa955faa-cd15-4c31-ac02-9189a7613b16","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"29907045-14a3-4352-979b-33eaf9b7e695","keyword":"乙二醇","originalKeyword":"乙二醇"},{"id":"1135f49d-e75b-4fc5-8f39-95dc2d231679","keyword":"氧化亚铜","originalKeyword":"氧化亚铜"},{"id":"378d1993-d66b-4c0f-9467-f87a80c04e47","keyword":"制备","originalKeyword":"制备"},{"id":"761f3f51-d08c-4a6b-aeb9-ef3648c02a23","keyword":"催化性能","originalKeyword":"催化性能"}],"language":"zh","publisherId":"clkxygc200602010","title":"乙二醇体系中纳米Cu2O的制备及其性能研究","volume":"24","year":"2006"},{"abstractinfo":"用热分析法研究了Al-Cu-Ag体系中Al-Al_2Cu-Ag_2Al角的液相限。本体系属共晶类型。三元共晶点的温度为500℃,组成(wt-%)分别是Al(40),Cu(19.3),Ag(40.7)。","authors":[{"authorName":"刘淑祺","id":"0bace2e7-4b7a-4e06-9b6b-181a83063b86","originalAuthorName":"刘淑祺"},{"authorName":"赵世民","id":"476c8ac6-ee75-4ec6-b9b4-bb16ff282d88","originalAuthorName":"赵世民"},{"authorName":"张启运","id":"67807d18-26da-4016-ad55-8748cd043f40","originalAuthorName":"张启运"}],"categoryName":"|","doi":"","fpage":"114","id":"ba1e70ba-c21f-4b83-a0d5-8832e42afac3","issue":"2","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1983_2_16","title":"Al-Cu-Ag三元合金体系相图","volume":"19","year":"1983"},{"abstractinfo":"利用红外光谱,电子顺磁共振以及电阻率等实验手段,对LaBa2Cu3-xAlxOy(0≤x≤0.7)系列样品进行了研究.结果表明:Al掺杂导致了体系电荷的重新分布.随着Al掺杂量的增加,超导电性被很快地抑制,电阻率逐渐增大.随着Al掺杂量的增加,Cu(1)O(1)(530cm-1)的伸缩振动模的强度逐渐增大,并向低频方向移动,而Cu(1)O(4)(590cm-1)的震动模逐渐向高频方向移动.电子顺磁共振实验(EPR)揭示了不同含量的Al掺杂对Cu2+的自旋关联行为的影响.本文对不同掺杂区的声子振动、自旋关联变化和输运性质进行了分析讨论.","authors":[{"authorName":"王关生","id":"bc826b7a-7fb8-48ca-8ac6-be4a7229f7f7","originalAuthorName":"王关生"},{"authorName":"许高杰","id":"1eb1540f-7ca3-446c-a9e8-6b2d0d6b770c","originalAuthorName":"许高杰"},{"authorName":"刘飚","id":"e51a9967-5403-4c01-966a-e33a116c1eae","originalAuthorName":"刘飚"},{"authorName":"浦其荣","id":"a902210f-3f71-4f74-8212-6917032adc53","originalAuthorName":"浦其荣"},{"authorName":"张建武","id":"7819a388-2320-41bf-a24c-6220368c2f64","originalAuthorName":"张建武"},{"authorName":"丁泽军","id":"8f420549-ab7a-41c0-9b7d-94be7a7efcbb","originalAuthorName":"丁泽军"}],"doi":"10.3969/j.issn.1000-3258.2005.z1.028","fpage":"535","id":"2fbcd1b3-9b7a-4809-a510-8adee02719a0","issue":"z1","journal":{"abbrevTitle":"DWWLXB","coverImgSrc":"journal/img/cover/DWWLXB.jpg","id":"19","issnPpub":"1000-3258","publisherId":"DWWLXB","title":"低温物理学报 "},"keywords":[{"id":"fa454566-09ac-4a70-979e-4843043db02d","keyword":"Al","originalKeyword":"Al"},{"id":"ed11e91c-4bc9-42c1-817f-c1d3f5ba3cba","keyword":"LaBa2Cu3Oy","originalKeyword":"LaBa2Cu3Oy"}],"language":"zh","publisherId":"dwwlxb2005z1028","title":"Al掺杂志LaBa2Cu3Oy体系的物理性质的影响","volume":"27","year":"2005"},{"abstractinfo":"This work concerns with the high temperature deformation of internally oxidized Al2O3/Cu composites. The investigation revealed that dispersive alumina can obstruct dislocation sliding and define the subgrain size thereby improve significantly the strength of the materials at high temperature. The sliding of dislocations is a main deformation mechanism in the given temperature range. The sliding of grain boundary and diffusive creep play important roles at high temperature and low strain rate. The dispersoids can raise the recrystallization temperature to higher than 1223 K. Dynamic recovery is a main softening way under the experimental conditions. Higher deformation rate and lower deformation temperature imply a higher flow stress.","authors":[{"authorName":"Jianjun WU. Yun ZHANG","id":"bc9223ce-3950-424e-8bef-00e116b08da2","originalAuthorName":"Jianjun WU. Yun ZHANG"},{"authorName":" Yanfei JIANG","id":"83c2d22f-03b7-459f-92a1-361cc0763cc3","originalAuthorName":" Yanfei JIANG"},{"authorName":" Meiyun XUE","id":"05760a93-c698-48f1-a443-a9a731c4040b","originalAuthorName":" Meiyun XUE"},{"authorName":" Tingquan LEI","id":"7d6b4092-fd22-496e-8a50-df3a4272ea3f","originalAuthorName":" Tingquan LEI"}],"categoryName":"|","doi":"","fpage":"325","id":"f09a3264-e0bc-4f5b-bef7-af8f90d19c50","issue":"3","journal":{"abbrevTitle":"CLKXJSY","coverImgSrc":"journal/img/cover/JMST.jpg","id":"11","issnPpub":"1005-0302 ","publisherId":"CLKXJSY","title":"材料科学技术(英文)"},"keywords":[],"language":"en","publisherId":"1005-0302_2001_3_6","title":"High temperature deformation of Al2O3/Cu composites","volume":"17","year":"2001"}],"totalpage":10351,"totalrecord":103502}