{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了近年来共混技术在淀粉塑料中应用的研究现状及进展.以所共混聚合物组分的不同为主线,分为3大类共混体系,即淀粉与可降解聚合物,淀粉与不可降解聚合物,淀粉与可降解和不可降解聚合物三元体系.同时,从材料构效关系的基本原理出发,以共混体系的微观结构和宏观性能为侧重点,着重探讨了共混体系中各组分之间的相界面形态关系,组分之间的相容性,以及不同聚合物组成对共混体系的力学、吸水、加工成型、热及降解性能的影响,并对未来的发展趋势进行了展望.","authors":[{"authorName":"王礼建","id":"2e46ec25-6ad7-4d04-b167-c056fbfa1d6a","originalAuthorName":"王礼建"},{"authorName":"董亚强","id":"b12ade69-39b5-45fc-9483-5581ee1d6c00","originalAuthorName":"董亚强"},{"authorName":"郭斌","id":"070fe6f9-654a-4879-a18f-5311d554fdf3","originalAuthorName":"郭斌"},{"authorName":"李本刚","id":"d0c17187-cc82-4146-8a26-8c762dfad6cf","originalAuthorName":"李本刚"},{"authorName":"曹绪芝","id":"3151839b-b02e-45ca-a472-59a8d1640064","originalAuthorName":"曹绪芝"},{"authorName":"李盘欣","id":"2414221e-24f0-4f86-abc6-18735e702dac","originalAuthorName":"李盘欣"}],"doi":"10.11896/j.issn.1005-023X.2015.05.013","fpage":"78","id":"d53bbf09-4f46-4f4c-8cfe-50c045316a47","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"5993fb4d-ce8d-45df-90dd-727c0e49da00","keyword":"共混","originalKeyword":"共混"},{"id":"4db58523-e059-434b-942e-15c9fd344f3b","keyword":"淀粉塑料","originalKeyword":"淀粉塑料"},{"id":"1095d45f-a41a-4494-91e6-be5dee4ae730","keyword":"可降解聚合物","originalKeyword":"可降解聚合物"},{"id":"fdb9e808-43f1-4b75-8ccc-845ce2389fc5","keyword":"聚烯烃","originalKeyword":"聚烯烃"}],"language":"zh","publisherId":"cldb201505013","title":"共混技术在淀粉塑料中的应用研究进展","volume":"29","year":"2015"},{"abstractinfo":"首先用微晶纤维素(MCC)对热塑性淀粉(TPS)进行增强,再将低密度聚乙烯(LDPE)与增强后的TPS共混,并以马来酸酐接枝聚乙烯(MA-g-PE)作为增容剂,制成MCC/TPS/LDPE复合材料.通过电子拉力机、冲击强度试验机、热重法、转矩流变仪和接触角测定仪,研究了不同用量的MA-g-PE对MCC/TPS/LDPE性能的影响.结果表明,增容剂的加入,使复合材料的拉伸强度先增大后减小,断裂伸长率和冲击强度不断增大,材料韧性显著提高;对复合材料的热稳定性有所改善,但影响较小;当添加量小于6%时,加工性能提高明显;此外,耐水性提高显著.总体而言,当MA-g-PE的添加量为4%时,材料的综合性能最好(拉伸强度为13.52 MPa,冲击强度为6.38 kJ/m2,接触角为94.47°).","authors":[{"authorName":"郭斌","id":"b14d7e73-5067-4ad4-adc0-60c315b8ce8b","originalAuthorName":"郭斌"},{"authorName":"王礼建","id":"a6a2ca26-6b2d-4720-bf8e-d38ab8e04c6c","originalAuthorName":"王礼建"},{"authorName":"董亚强","id":"6c1487d5-3f81-4524-869b-3595980555cd","originalAuthorName":"董亚强"},{"authorName":"李本刚","id":"f5809902-cddc-471a-98ec-03cf5ddc4ba7","originalAuthorName":"李本刚"},{"authorName":"范磊","id":"9cf276c7-38c2-4108-b557-a199211e93ca","originalAuthorName":"范磊"},{"authorName":"李盘欣","id":"fff579ec-f325-490e-9d95-2eb84715a2e9","originalAuthorName":"李盘欣"}],"doi":"","fpage":"112","id":"9055ecae-b098-4821-b0de-8d68a86fc28f","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"d6ba476b-6262-43f1-9c18-13877ffbe736","keyword":"增容剂","originalKeyword":"增容剂"},{"id":"25f580d4-b389-4649-98f5-a18d7f11e16a","keyword":"微晶纤维素","originalKeyword":"微晶纤维素"},{"id":"73fae1de-c4d0-4353-9657-d5fb54aed95f","keyword":"增强","originalKeyword":"增强"},{"id":"6b67e6b6-f140-410d-9003-e24880c3d0c8","keyword":"淀粉塑料","originalKeyword":"淀粉塑料"}],"language":"zh","publisherId":"gfzclkxygc201506022","title":"增容剂对微晶纤维素增强淀粉塑料的影响","volume":"31","year":"2015"},{"abstractinfo":"介绍了淀粉的基本性质,阐述了两类淀粉基环境可生物降解高分子材料的研究开发和发展现状,讨论了其制备原理、方法和存在的问题,并指出了发展方向.","authors":[{"authorName":"王云芳","id":"0b039cc3-1f71-46a8-a118-6c2cfad8b1b1","originalAuthorName":"王云芳"},{"authorName":"王汝敏","id":"f5afff27-8863-488f-93df-793ce3b53c5c","originalAuthorName":"王汝敏"},{"authorName":"赵瑾","id":"13db05c1-3856-44e7-a889-ee80abe05152","originalAuthorName":"赵瑾"},{"authorName":"郭增昌","id":"8de8ae3e-47fe-4d9a-9847-321ef8f42635","originalAuthorName":"郭增昌"}],"doi":"","fpage":"12","id":"5a922f6c-8ddc-4e55-9ccb-88dd25ea90f8","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d6afa91a-9cff-4480-83a5-74d60157d670","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"e4d25bec-0be6-409b-a2a3-fab8a7c40028","keyword":"生物降解","originalKeyword":"生物降解"},{"id":"2ff3521c-23f1-4936-9678-d79c5fc80ef6","keyword":"淀粉塑料","originalKeyword":"淀粉塑料"},{"id":"0b6e7eda-2375-48ee-a8cf-250734f6e84a","keyword":"填充型淀粉塑料","originalKeyword":"填充型淀粉塑料"},{"id":"9708bc4d-2493-4303-988d-cdc9f7e035dd","keyword":"全淀粉塑料","originalKeyword":"全淀粉塑料"}],"language":"zh","publisherId":"cldb200504004","title":"淀粉基环境可降解高分子材料研究进展","volume":"19","year":"2005"},{"abstractinfo":"综述了近年来淀粉经改性后用于热塑性淀粉塑料领域的研究进展.根据淀粉的改性方法不同,主要综述了淀粉氧化改性、酯化改性、醚化改性、交联改性以及聚氨酯改性后对所制备的热塑性淀粉塑料性能的影响,归纳和总结了最新的研究成果并提出展望.","authors":[{"authorName":"王礼建","id":"dad4786d-9cb7-47fe-87b9-97ed1b435a05","originalAuthorName":"王礼建"},{"authorName":"董亚强","id":"68173a60-84b2-49e3-a532-4c0ec05403ea","originalAuthorName":"董亚强"},{"authorName":"杨政","id":"c8a83614-4a03-4867-9be8-51a908684c84","originalAuthorName":"杨政"},{"authorName":"郭斌","id":"fd79b435-051c-4d38-920c-37640830e74a","originalAuthorName":"郭斌"},{"authorName":"李本刚","id":"c46c14ec-ef94-4e45-b78c-5a3398d85d21","originalAuthorName":"李本刚"},{"authorName":"李盘欣","id":"1c5870d1-0a0e-498e-84bd-bb929c45fb30","originalAuthorName":"李盘欣"}],"doi":"10.11896/j.issn.1005-023X.2015.017.012","fpage":"63","id":"29e863f4-649e-426d-a33a-0309b62806d8","issue":"17","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e171415e-fec9-4fe8-bee6-b6efe4ce54f2","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"ad125eff-2921-4750-88f7-3d0552980842","keyword":"化学改性","originalKeyword":"化学改性"},{"id":"366e87af-7fa7-4db5-9c60-3ecbe56defb7","keyword":"热塑性淀粉","originalKeyword":"热塑性淀粉"}],"language":"zh","publisherId":"cldb201517012","title":"基于淀粉直接改性的热塑性淀粉塑料研究进展","volume":"29","year":"2015"},{"abstractinfo":"聚苯乙烯泡沫塑料降解困难,引起了环境污染,不得不限制其使用.聚乙烯泡沫塑料在自然环境中曝晒,在光、热、氧作用下能降解,但是其降解速度比聚丙烯泡沫塑料的低得多.而聚乙烯和聚丙烯泡沫塑料均难于生物降解.淀粉-聚丙烯泡沫塑料易于进行光、热、氧作用下的降解并且易于进行生物降解,这对于环境保护有着重要的意义.本文介绍了淀粉-聚丙烯泡沫塑料的配方和工艺情况.淀粉-聚苯烯复合物在加入助剂的条件下,采用挤出发泡的方法,可制得易于降解的泡沫塑料.","authors":[{"authorName":"郑君里","id":"a4722aa9-5b55-4233-b4ca-5e70efbcff4f","originalAuthorName":"郑君里"},{"authorName":"李新","id":"d508dcde-d7a8-4158-95d1-29e1a10d8564","originalAuthorName":"李新"},{"authorName":"李郁忠","id":"d31a6d79-e8d2-4cc7-a9a1-386505c7cad4","originalAuthorName":"李郁忠"}],"doi":"10.3969/j.issn.1671-5381.2008.01.006","fpage":"20","id":"5ba3a4dc-44ad-4497-83e1-a42e590224fb","issue":"1","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"13c867e4-cc9a-4ae3-8d1a-a4f19b4c708f","keyword":"淀粉-聚丙烯泡沫塑料","originalKeyword":"淀粉-聚丙烯泡沫塑料"},{"id":"0d664ddc-07ae-411a-b7d4-112e875cac83","keyword":"降解","originalKeyword":"降解"},{"id":"98ea8387-58b5-406c-b12b-5347590c2d7e","keyword":"生物降解","originalKeyword":"生物降解"}],"language":"zh","publisherId":"hccllhyyy200801006","title":"淀粉-聚丙烯泡沫塑料的研究","volume":"37","year":"2008"},{"abstractinfo":"采用 w(Al2 O3)≥87.5%、粒度为5~3、3~1、≤1、<0.074 mm 的特级矾土,w(Al2 O3)≥99.4%、粒度为5μm 的烧结氧化铝微粉,w(Al2 O3)≥20%的黏土粉,改性淀粉以及添加剂配成可塑料。研究了改性淀粉加入量(w)0、1%、1.5%、2%、2.5%时对可塑料物理性能的影响。结果表明:1)采用1.5%(w)的改性淀粉就可以替代5%(w)的黏土,增强可塑料的保湿性和可塑性,延长了其保存期;2)使用改性淀粉有助于减少可塑料液体结合剂的加入量,提高材料烘干和热处理后的常温强度。","authors":[{"authorName":"肖家志","id":"43d4b42c-9279-40b5-86b8-076bce87c7a3","originalAuthorName":"肖家志"},{"authorName":"梁亚丽","id":"913c926f-4d46-49de-9626-cf00f6b7e6dd","originalAuthorName":"梁亚丽"},{"authorName":"张军","id":"2a304ad7-4cba-4979-9849-bae380986906","originalAuthorName":"张军"},{"authorName":"禄向阳","id":"99efa744-0b61-49c6-b374-a5b5ea6f05e9","originalAuthorName":"禄向阳"}],"doi":"10.3969/j.issn.1001-1935.2015.05.018","fpage":"391","id":"1d3a8452-51a6-4692-bdc9-2b94b2fba09b","issue":"5","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"24c1586a-f816-463b-a260-00ebeb06ace1","keyword":"改性淀粉","originalKeyword":"改性淀粉"},{"id":"992d6616-0fa9-4c0e-b90d-f5eb7159cf0d","keyword":"可塑料","originalKeyword":"可塑料"},{"id":"e4739113-adc8-4867-b976-35e5746958df","keyword":"保存期","originalKeyword":"保存期"},{"id":"009793b8-6753-498b-80a0-6fa97833ee62","keyword":"物理性能","originalKeyword":"物理性能"}],"language":"zh","publisherId":"nhcl201505018","title":"改性淀粉加入量对可塑料性能的影响","volume":"","year":"2015"},{"abstractinfo":"以低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)及线性低密度聚乙烯(LLDPE)为基体,加入适量的改性淀粉及聚乙烯蜡,在单螺杆挤出机上实现增容共混过程,制备出具有良好实用性能的塑料地膜.探讨了LDPE、HDPE、LLDPE三种树脂的共混配比、改性淀粉加入量、聚乙烯蜡加入量等对塑料地膜材料力学性能的影响,利用扫描电镜表征了塑料膜的亚微观相态,并考察了塑料膜的生物降解性能.结果表明,聚乙烯蜡的加入可明显改善共混树脂与改性淀粉的相容性,并可提高塑料膜的力学性能和生物降解性能.","authors":[{"authorName":"陈建华","id":"ed1476a9-b2fc-47a1-9aab-e0938ab63adf","originalAuthorName":"陈建华"},{"authorName":"王鹏","id":"1aad5ecd-0c5c-45b3-b4ba-3969ce07548e","originalAuthorName":"王鹏"},{"authorName":"孟令辉","id":"91dd6a8f-3d4c-4a96-aa2f-58a5325c2652","originalAuthorName":"孟令辉"},{"authorName":"郑彤","id":"9c1d8009-9b5a-4011-b873-d3495b5c502d","originalAuthorName":"郑彤"},{"authorName":"陈春云","id":"caac6928-f4dc-488d-ab3b-e72b91955916","originalAuthorName":"陈春云"},{"authorName":"舒静","id":"57f56eb7-8feb-4e1f-afd8-0200a407d666","originalAuthorName":"舒静"},{"authorName":"赵宝秀","id":"85f18d31-a3ba-4937-bdac-5a8918a7c2ef","originalAuthorName":"赵宝秀"}],"doi":"10.3969/j.issn.1005-0299.2006.05.010","fpage":"482","id":"6973c526-109f-44c3-a4bf-7087785f3f24","issue":"5","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"80bcf46d-3c8c-4e1b-8593-183f6cc06583","keyword":"淀粉填充型塑料","originalKeyword":"淀粉填充型塑料"},{"id":"9265cd86-574b-474a-abda-b354c8f4aa7a","keyword":"聚乙烯蜡","originalKeyword":"聚乙烯蜡"},{"id":"82e54824-7032-44ba-a7ca-70ac9d38ed32","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"d19be490-6f7e-4d60-bf48-dd939522e305","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"4f029a26-4269-4b28-9adc-bd67f1589fbc","keyword":"生物降解性能","originalKeyword":"生物降解性能"}],"language":"zh","publisherId":"clkxygy200605010","title":"新型淀粉填充型塑料地膜的研制","volume":"14","year":"2006"},{"abstractinfo":"本文介绍了ST/PVA 淀粉塑料薄膜的制造、性能和应用情况,该薄膜是当今世界新型高分子材料之一,具有原料丰富,成本较低和可自然降解无污染的特点,为解决塑料污染全球性问题提供一条可靠途径,属国内首创产品,有良好的开发前景。","authors":[{"authorName":"邱威扬","id":"d0e9d532-4322-4006-8366-1496ea35a8a4","originalAuthorName":"邱威扬"},{"authorName":"邱贤华","id":"5d9c7d33-36fc-4f39-b29e-b3c07b2cccfa","originalAuthorName":"邱贤华"}],"categoryName":"|","doi":"","fpage":"157","id":"fb63eed1-d4e2-4dce-816c-4a8ff4fa5dca","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"e7a83e45-679e-44d2-bfe0-93eec2e1c42d","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"40f9bf0c-a4e1-4de3-a750-a7669031cea8","keyword":"biodegradation","originalKeyword":"biodegradation"},{"id":"a16c021b-f23c-4671-bd56-389efc0627e9","keyword":"plastic film","originalKeyword":"plastic film"}],"language":"zh","publisherId":"1005-3093_1993_2_10","title":"SP 淀粉塑料膜的制造、性能与应用","volume":"7","year":"1993"},{"abstractinfo":"发展淀粉基可生物降解塑料有利于节省石油资源、保护环境.国内外这方面的研究较多,并且在技术的实用性方面也取得了较大进展.目前研究热点集中在3个方向:淀粉与其它可生物降解高分子的直接填充;对淀粉表面修饰使其能与合成高分子相容;在淀粉与合成高分子体系中加入增塑剂.虽然淀粉基可生物降解塑料在综合性能上还不能与合成高分子相比,但由于淀粉的综合优势,淀粉基可生物降解塑料的研究和发展极具潜力.","authors":[{"authorName":"张政委","id":"8e0148b8-c810-4368-9231-83e1c858a393","originalAuthorName":"张政委"},{"authorName":"任鹏刚","id":"8f918f11-3087-4ede-8520-acf782d2aedb","originalAuthorName":"任鹏刚"}],"doi":"","fpage":"44","id":"b3698a5c-1b37-4313-a502-1800b68de6eb","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"124521f1-d20a-41d7-9bff-f3f32eea1cef","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"499f65a0-014d-4e33-966d-901ecb3dca68","keyword":"降解塑料","originalKeyword":"降解塑料"}],"language":"zh","publisherId":"cldb200807011","title":"淀粉基可生物降解塑料的研究现状","volume":"22","year":"2008"},{"abstractinfo":"以淀粉和聚乙烯醇(PVA)为主要原料,在适当助剂作用下共混发泡制成泡沫塑料.研究了淀粉与PVA的比例、发泡剂用量、发泡温度、压力等条件对泡沫密度的影响.研究发现,当淀粉/PVA比例为6.3,发泡剂用量为共混物固含量的0.4%,发泡温度为190℃时,泡沫制品具有较低的密度.比较了由醇解度为88%和99%的PVA制备的淀粉泡沫塑料的吸水性,发现由PVA 1799制备的泡沫具有较好的耐水性.扫描电子显微镜照片显示淀粉与PVA具有很好的相容性.","authors":[{"authorName":"曾建兵","id":"c23ef62d-b6db-4a0c-8c7b-1a901df711ef","originalAuthorName":"曾建兵"},{"authorName":"李陶","id":"153bf578-6b9e-4e63-ac60-71c570c37a57","originalAuthorName":"李陶"},{"authorName":"汪秀丽","id":"2fb9dc83-db8f-46d7-806d-c3583afef0c7","originalAuthorName":"汪秀丽"}],"doi":"","fpage":"130","id":"4589f382-1aad-42de-80cf-c006f43f99a4","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"9742edc5-62a4-460a-8038-5d39a8d2f91b","keyword":"淀粉","originalKeyword":"淀粉"},{"id":"5fd0d64d-2b79-4a39-86a1-66603e2d6c34","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"b12cc962-cf0d-4eb5-88d2-c61f04c36863","keyword":"泡沫","originalKeyword":"泡沫"},{"id":"a4929725-99d9-48fc-bf55-efc6bf8c74df","keyword":"密度","originalKeyword":"密度"}],"language":"zh","publisherId":"gfzclkxygc200904036","title":"淀粉/聚乙烯醇泡沫塑料的制备及表面形貌分析","volume":"25","year":"2009"}],"totalpage":179,"totalrecord":1787}