{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用慢应变速率试验(SSRT)方法,研究了电极电位和应变速率对低合金钢-不锈钢异材焊接件16MNDS/309L/308L在模拟压水堆一回路高温水环境中应力腐蚀破裂(SCC)的影响.结果表明:在5×10-7 s-1应变速率条件下,在-720~+100mV(相对于标准氢电极SHE,下同)的低电位区,所有SSRT试样均在远离界面的308L焊缝金属区发生纯力学韧性断裂,与在氮气中的试验结果类似;当外加电位提高到+200mV后,试样在16MND5/309L界面发生SCC脆断,界面附近的16MND5侧发生穿晶SCC,309L侧发生沿晶SCC.该异材焊接件在该高温水环境中存在一个临界破裂电位,高于此电位发生SCC,在5×10-7 S-1的应变速率下,该临界破裂电位处于+100~+200 mV;降低速应变率至1×10-7s-1,临界破裂电位仍处于+100~+200mV;提高应变速率至1×10-6s-1后,在+200~+300mV电位区也没有显示出SCC.","authors":[{"authorName":"卢煦","id":"a5eb097e-adc4-4cc1-8d37-7265bb34cc7f","originalAuthorName":"卢煦"},{"authorName":"袁义帆","id":"8d66a1cc-5e6a-4630-a0eb-b0c28e33f4fa","originalAuthorName":"袁义帆"},{"authorName":"李润","id":"1a8cf26b-1e0f-416d-a78a-c3391fc9def9","originalAuthorName":"李润"},{"authorName":"李光福","id":"7eaa7958-4dda-49e7-b58b-cd6f90641ebc","originalAuthorName":"李光福"}],"doi":"10.11973/fsyfh-201510005","fpage":"923","id":"31fb5550-dc1b-46f3-a9e2-010d391fb595","issue":"10","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"1c2bf1a7-dbd1-470a-a168-1c5511873aab","keyword":"压水堆核电站","originalKeyword":"压水堆核电站"},{"id":"5ba796fe-dea3-4f00-a001-3c52ac67a0c4","keyword":"异材焊接件","originalKeyword":"异材焊接件"},{"id":"a7423dbb-ffd6-4843-ae40-861b86a609f9","keyword":"一回路高温水","originalKeyword":"一回路高温水"},{"id":"2d9bca1d-8499-49f8-9a88-12030f20f088","keyword":"应力腐蚀破裂","originalKeyword":"应力腐蚀破裂"},{"id":"31d1b2c0-f1ae-472c-8a8a-c77dea7bcfe1","keyword":"电极电位","originalKeyword":"电极电位"},{"id":"10c9d6c4-432c-4904-8cca-27f47bfaaf5f","keyword":"应变速率","originalKeyword":"应变速率"}],"language":"zh","publisherId":"fsyfh201510005","title":"电极电位和应变速率对16MNDS/309L/308L异材焊接件高温水中应力腐蚀破裂行为的影响","volume":"36","year":"2015"},{"abstractinfo":"采用慢应变速率试验(SSRT)和电化学控制结合的方法,研究了水中杂质(氯离子和硫酸根离子)和电极电位对国产核电压力容器用SA-508Ⅲ(含S 0.0025%)低合金钢在模拟压水堆(PWR)一回路290℃高温高压水质环境中应力腐蚀破裂(SCC)性能的影响.电位范围从-720~+400 mV(SHE),模拟从低氧含氢的理想状态到溶解氧显著超标状态的一系列服役环境.试验结果表明,在无杂质掺杂、掺杂10 mg·L-1的氯离子和掺杂10 mg·L-1硫酸根离子的三种水环境中,电极电位对该材料SCC的影响相似,当电位处于-720~-200 mV(SHE)范围时,试样上未发现SCC,随着电位逐渐升高,试样出现SCC迹象直至发生显著的SCC而脆断.水中掺杂10 mg·L-1的氯离子或硫酸根离子后,发生显著SCC而脆断的电位下降,即SCC敏感性提高.扫描电镜断口观察表明,SCC裂纹通常在试样表面的夹杂物处萌生,并以准解理穿晶模式呈扇形扩展.分析表明,该钢SCC破裂机理应该属于阳极溶解机制.","authors":[{"authorName":"彭君","id":"47c67aa4-161c-4aa4-a3a7-1d1e085239dc","originalAuthorName":"彭君"},{"authorName":"王光辉","id":"f8640f6e-2bea-447e-8d0c-a3077e47c628","originalAuthorName":"王光辉"},{"authorName":"李冠军","id":"1dbbe660-3cf5-4c2e-81e6-388bdcc0e010","originalAuthorName":"李冠军"},{"authorName":"李光福","id":"a90b2be8-9e69-4562-81fa-b789e25c3171","originalAuthorName":"李光福"},{"authorName":"杨武","id":"f8a06cf3-0c8c-4237-83b5-61876f0d3c1f","originalAuthorName":"杨武"}],"doi":"","fpage":"1","id":"bc06d64a-bef1-4836-808e-61a2c41c9558","issue":"1","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"868716a0-26ca-44f2-91a8-f69f189fa417","keyword":"压水堆核电厂","originalKeyword":"压水堆核电厂"},{"id":"af55f1ab-7823-4e42-b3e4-ba999d84548e","keyword":"低合金钢","originalKeyword":"低合金钢"},{"id":"1d754623-6ad4-497a-a614-9da051f3531f","keyword":"应力腐蚀破裂","originalKeyword":"应力腐蚀破裂"},{"id":"326674cc-6846-4866-aed5-3c1c219d677d","keyword":"杂质","originalKeyword":"杂质"},{"id":"0ad6d804-44b7-4ac5-9dea-80cbf8ca2437","keyword":"电极电位","originalKeyword":"电极电位"}],"language":"zh","publisherId":"fsyfh201301001","title":"水中杂质和电极电位对国产SA-508Ⅲ低合金钢在模拟一回路高温水环境中应力腐蚀破裂的影响","volume":"34","year":"2013"},{"abstractinfo":"采用化学去污工艺可降低反应堆一回路冷却系统周围辐射场. 总结了近年来反应堆一回路冷却系统去污工艺和去污试剂对结构材料的腐蚀影响的研究成果, 并建议后续研究方向.","authors":[{"authorName":"谭昭怡","id":"d2789626-c0b6-46fd-8dea-ddd773a26628","originalAuthorName":"谭昭怡"},{"authorName":"李烨","id":"30f19557-369b-4e83-9f85-239738c8217a","originalAuthorName":"李烨"},{"authorName":"孙宇","id":"d1e65ffc-403c-481d-9808-a20a0f025816","originalAuthorName":"孙宇"},{"authorName":"汪小琳","id":"9ca04fcf-bf61-4e85-8ae7-591574347e44","originalAuthorName":"汪小琳"},{"authorName":"张东","id":"53c55cd2-20b3-473e-a068-90010f2cbaec","originalAuthorName":"张东"}],"categoryName":"|","doi":"","fpage":"275","id":"15b831db-ee65-4142-9929-2097946f45b1","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"9c8d9ee1-a7ac-4fa2-a11c-bd53ee3b2553","keyword":"一回路冷却系统","originalKeyword":"一回路冷却系统"},{"id":"c993ec28-c534-4c52-bde5-034a2c1dd14f","keyword":"decontamination process","originalKeyword":"decontamination process"},{"id":"5ba69847-47ce-419f-898b-481b1e6a619e","keyword":"corrosion effect","originalKeyword":"corrosion effect"},{"id":"b9b467b8-e14a-411d-b9c3-a8f2b999f4fb","keyword":"structural material","originalKeyword":"structural material"}],"language":"zh","publisherId":"1002-6495_2012_4_3","title":"反应堆一回路系统去污工艺及其对结构材料腐蚀的影响","volume":"24","year":"2012"},{"abstractinfo":"在自行搭建的高温高压水循环回路系统中,通过原位电化学测量,结合SEM观察和XPS分析,研究了核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水环境中的腐蚀行为.结果表明,690合金和800合金的自腐蚀电位随浸泡时间的延长而逐渐降低,浸泡时间对690合金和800合金的阻抗谱影响并不明显.经过408 h浸泡后,690合金表面生成了大量针状氧化物,800合金表面则同时生成了针状氧化物和颗粒状氧化物.690合金表面富Cr氧化层位于表面膜内侧,而800合金的富Cr氧化层位于表面膜外侧.在高温高压水中,690合金比800合金表现出更为优异的抗腐蚀能力.浸泡实验后,溶液中主要金属离子Ni2+,Cr3+和Fe3+的含量分别为0.1×10-6,0.1×10-6和0.3×10-6.","authors":[{"authorName":"郦晓慧","id":"283cc67d-74e3-4992-b10f-0a77a6a3b52b","originalAuthorName":"郦晓慧"},{"authorName":"王俭秋","id":"b96f1ea7-3b72-411e-a3ae-4cee32b3d495","originalAuthorName":"王俭秋"},{"authorName":"韩恩厚","id":"82224b68-ca7b-4cf0-a4a7-068e4d0c201e","originalAuthorName":"韩恩厚"},{"authorName":"柯伟","id":"a4444c20-97ef-4a4b-8b9b-0a911a7d464c","originalAuthorName":"柯伟"}],"doi":"10.3724/SP.J.1037.2012.00150","fpage":"941","id":"c9752f1f-88aa-4e53-9ea1-26db3fbe08c5","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"e11a0b46-7e95-45dc-a7fe-233197ae7e08","keyword":"690合金","originalKeyword":"690合金"},{"id":"f7430423-6e7f-40dc-8eac-b7efc5fd88b0","keyword":"800合金","originalKeyword":"800合金"},{"id":"e721754f-8a3f-4760-a887-1c274091db40","keyword":"高温高压水","originalKeyword":"高温高压水"},{"id":"12474146-cfbd-4bf6-8d7f-90cd2405da2e","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"jsxb201208007","title":"核级商用690合金和800合金在模拟压水堆核电站一回路高温高压水中的腐蚀行为研究","volume":"48","year":"2012"},{"abstractinfo":"在模拟压水堆一回路水环境中,对镍基690合金进行了在加锌量分别为10,60,120 μg/L的三组320℃高温溶液中600 h的腐蚀试验,并对腐蚀后的试样表面进行了X射线光电子能谱(XPS)分析.结果表明,随着锌浓度的增加,试样的腐蚀增重速率降低,氧化膜厚度减薄,降低腐蚀速率的有效加锌量范围为10~60μg/L;试样表面形成主要成分为ZnCr2O4和Cr2O3的氧化膜.","authors":[{"authorName":"段振刚","id":"b7e52257-0c61-4a1e-be49-dfbe4c0340dc","originalAuthorName":"段振刚"},{"authorName":"潘向烽","id":"a8d9b53e-0bd2-45e7-80f7-4ddfd07c1d19","originalAuthorName":"潘向烽"},{"authorName":"张乐福","id":"5a8c743a-810d-4c75-81d9-943e54f75213","originalAuthorName":"张乐福"},{"authorName":"王力","id":"07b6d4d1-14a3-4064-b7a0-ccdc262f8b92","originalAuthorName":"王力"},{"authorName":"徐雪莲","id":"08ee6ff1-8086-4259-93b5-13006fa9360a","originalAuthorName":"徐雪莲"},{"authorName":"石秀强","id":"488629c4-896c-4f85-88a1-f96e32de849c","originalAuthorName":"石秀强"}],"doi":"","fpage":"348","id":"551298e7-5de6-4bb4-adfa-8536df231d46","issue":"4","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"c9d086a9-f56f-44a9-a87c-ff9cdc75b312","keyword":"压水堆","originalKeyword":"压水堆"},{"id":"f4e9f108-7ae7-4825-ad32-7eccba9163f3","keyword":"690合金","originalKeyword":"690合金"},{"id":"56e627d8-58ba-4e38-90ca-4a33dfae7c62","keyword":"Zn浓度","originalKeyword":"Zn浓度"},{"id":"23765469-55f4-43c7-8489-91fa33cf3c47","keyword":"氧化膜","originalKeyword":"氧化膜"},{"id":"ef623c27-24c7-425e-9c09-98c3a4ce8375","keyword":"XPS分析","originalKeyword":"XPS分析"}],"language":"zh","publisherId":"fsyfh201404010","title":"压水堆一回路水中锌含量对镍基690合金氧化膜的影响","volume":"35","year":"2014"},{"abstractinfo":"通过模拟压水堆一回路水环境,对304和316L两种不锈钢进行了在含锌10μg/kg,320℃高温溶液中浸泡1 000 h的腐蚀试验,并对试验后的试样氧化膜进行SEM和XPS分析.结果表明,304不锈钢的腐蚀增重率高于316L,且其氧化膜较316L疏松;两种试样均形成了富铁、锌内富铬的氧化膜;外层氧化膜以(Zn,Fe,Ni)(Fe,Cr)2O4为主,内层以ZnCr2O4为主,氧化膜与基体过渡层以Cr2O3为主.","authors":[{"authorName":"段振刚","id":"b3f551e1-58b2-40a4-897f-634eed2a485b","originalAuthorName":"段振刚"},{"authorName":"沈朝","id":"8eb271c0-c8ea-4a4f-9d90-542a8d81a0ec","originalAuthorName":"沈朝"},{"authorName":"张乐福","id":"2ddc7713-8cc8-4690-aa7c-1160d76aaa3a","originalAuthorName":"张乐福"},{"authorName":"王力","id":"b92e7d1a-a884-4dbc-b72a-bdc67b3280b1","originalAuthorName":"王力"},{"authorName":"徐雪莲","id":"c2373abd-17c6-4a6f-85d3-6e9978358022","originalAuthorName":"徐雪莲"},{"authorName":"石秀强","id":"e651a322-de49-4f31-8d5d-28c9d5aa49ed","originalAuthorName":"石秀强"}],"doi":"","fpage":"637","id":"79ffb6e6-c86c-45c2-8120-1f4108c99dfa","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"84077071-772c-4482-be14-8e298b27f001","keyword":"压水堆","originalKeyword":"压水堆"},{"id":"57fb701a-156e-4a68-945b-08a13555d689","keyword":"304不锈钢","originalKeyword":"304不锈钢"},{"id":"faf523c6-efaa-43ce-ae2f-8eb1607fe09c","keyword":"316L不锈钢","originalKeyword":"316L不锈钢"},{"id":"2715610a-11e6-4c59-9710-e87b08d6b47b","keyword":"含锌溶液","originalKeyword":"含锌溶液"},{"id":"cb312787-8b0f-4c66-baad-fa619fce8cd0","keyword":"XPS分析","originalKeyword":"XPS分析"}],"language":"zh","publisherId":"fsyfh201407003","title":"奥氏体不锈钢在含锌PWR一回路水中的均匀腐蚀行为","volume":"35","year":"2014"},{"abstractinfo":"通过模拟压水堆一回路水环境,对690和800两种合金进行了在含Zn 10 μg/kg、320℃高温溶液中浸泡1000 h的腐蚀实验,并对实验后的试样氧化膜进行SEM和XPS分析.结果表明,690镍基合金的腐蚀增重率低于800合金,其氧化膜较800合金薄;两种试样均形成了外富Fe、Zn,内富Cr的氧化膜;随着距离氧化膜表面距离的增加,氧化膜中化合物的主要成分由(Zn,Fe,Ni)(Fe,Cr)2O4依次向ZnCr2O4和Cr2O3过渡.","authors":[{"authorName":"段振刚","id":"b2d32bbe-a7e1-4d93-93fa-875c68d2457b","originalAuthorName":"段振刚"},{"authorName":"杜东海","id":"0a536616-1599-435a-9a9b-9afc8a1d7080","originalAuthorName":"杜东海"},{"authorName":"王力","id":"89f9b3fe-cb7e-49cc-a8a5-47f7dad0335b","originalAuthorName":"王力"},{"authorName":"张乐福","id":"d00ba3c1-1138-413b-83a4-c2f1e01d64ce","originalAuthorName":"张乐福"},{"authorName":"徐雪莲","id":"4875d34b-7231-40c9-a3a4-65de500c9f38","originalAuthorName":"徐雪莲"},{"authorName":"石秀强","id":"42cca23a-62e7-43b6-bfc1-3858e90bb5e2","originalAuthorName":"石秀强"}],"doi":"","fpage":"218","id":"fecb1b69-1016-4120-90b0-94281fa00019","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"f5c4c219-0862-416e-b94a-ead7929662c8","keyword":"压水堆","originalKeyword":"压水堆"},{"id":"adfd1a3f-5b79-4255-8dd2-203621dbb1e4","keyword":"690合金","originalKeyword":"690合金"},{"id":"e07bb67c-5dc2-4f6b-b907-210af339a3c9","keyword":"800合金","originalKeyword":"800合金"},{"id":"a050abe0-348d-472d-92c7-d397d1b89349","keyword":"含锌溶液","originalKeyword":"含锌溶液"},{"id":"df2a2550-408d-456b-a124-bcce969aeec3","keyword":"XPS分析","originalKeyword":"XPS分析"}],"language":"zh","publisherId":"fskxyfhjs201403004","title":"690合金和800合金在含锌PWR一回路水中的均匀腐蚀行为研究","volume":"26","year":"2014"},{"abstractinfo":"从核电站一回路铸造奥氏体不锈钢热老化现象、热老化后力学性能变化趋势及力学性能预测流程等方面,对铸造奥氏体不锈钢热老化后冲击性能、拉伸性能、J-R曲线和断裂韧性力学性能预测的研究现状进行了综述.并对目前力学性能预测方法的不足提出自己的想法.","authors":[{"authorName":"杜康","id":"d417f932-21b2-4cfd-b98b-7448b55a0097","originalAuthorName":"杜康"},{"authorName":"王艳丽","id":"7736cbac-7669-4014-9975-b531da0bde0f","originalAuthorName":"王艳丽"},{"authorName":"刘刚","id":"5cbd4ba8-7071-49bc-a453-99d16f842c11","originalAuthorName":"刘刚"},{"authorName":"李时磊","id":"c0e2d017-b685-4198-a8fa-5a26694d4eee","originalAuthorName":"李时磊"},{"authorName":"吕绪明","id":"7a074e87-6c0c-46ef-9c7a-b2bd5444783c","originalAuthorName":"吕绪明"},{"authorName":"王西涛","id":"e8d66d85-43b8-4297-ac51-8e51aac03f1f","originalAuthorName":"王西涛"}],"doi":"","fpage":"95","id":"17a0767b-028a-4080-bd9b-8f4bfe4497ad","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9cb0f11a-7250-4cb1-bc83-0853fc3031b3","keyword":"铸造奥氏体不锈钢","originalKeyword":"铸造奥氏体不锈钢"},{"id":"c0508151-b1c4-46c3-b888-ffe38926794a","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"9ad0e8f6-6882-42e5-b4e3-96457a4471ce","keyword":"热老化","originalKeyword":"热老化"}],"language":"zh","publisherId":"cldb201401020","title":"核电站一回路主管道材料热老化力学性能的预测概述","volume":"28","year":"2014"},{"abstractinfo":"研究了σ相对核电一回路主管道Z3CN20.09M不锈钢冲击韧性的影响,利用原位拉伸、显微硬度、断口形貌等手段分析了σ相的脆化机理.结果表明,σ相显著降低一回路主管道不锈钢的冲击韧性,时效处理Z3CN20.09M不锈钢中以σ相为主的由铁素体共析分解生成的(σ+γ2)结构的硬度远高于奥氏体基体,两者变形协调性差,(σ+γ2)结构阻碍位错滑移,提高材料强度,同时降低塑性;(σ+γ2)结构内部存在大量高能量σ/γ2和α/σ/γ2非共格界面,变形时应力在此处集中,成为潜在裂纹源,易萌生裂纹.高应变速率下,裂纹迅速在其内部产生、扩展是材料韧性降低、变脆的本质原因.","authors":[{"authorName":"王永强","id":"33ae0e6d-7d0e-40a8-9731-99002b859b00","originalAuthorName":"王永强"},{"authorName":"杨滨","id":"6ed5037a-76d8-4f5b-ab62-12cd1831c372","originalAuthorName":"杨滨"},{"authorName":"李娜","id":"45fd0cd5-6c05-4586-b8db-837f7bfd841c","originalAuthorName":"李娜"},{"authorName":"林苏华","id":"58e74a49-9692-4d6f-addb-96b66f552311","originalAuthorName":"林苏华"},{"authorName":"孙立","id":"3b0a2f73-d90c-4fef-ad78-7eeed9bbe414","originalAuthorName":"孙立"}],"doi":"10.11900/0412.1961.2015.00180","fpage":"17","id":"fd679267-84af-48ff-9ffe-10a2e5b1940b","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"2a648520-ccea-486b-b932-08cc6cf7121c","keyword":"Z3CN20.09M不锈钢","originalKeyword":"Z3CN20.09M不锈钢"},{"id":"7bcdc402-bf45-4c5b-8edd-04b39c7c0987","keyword":"σ相","originalKeyword":"σ相"},{"id":"20cf49a4-7da1-426e-b759-a30f85b8147e","keyword":"韧性","originalKeyword":"韧性"},{"id":"c88e60ab-593f-4253-bfdf-42a7ae191731","keyword":"脆化机理","originalKeyword":"脆化机理"}],"language":"zh","publisherId":"jsxb201601003","title":"σ在核电一回路主管道不锈钢中的脆化机理","volume":"52","year":"2016"},{"abstractinfo":"研究了预充氢和模拟压水堆核电站一回路水中预浸泡对有、无经过2o%轧制冷加工690合金拉伸性能的影响.室温下空气中拉伸试验结果表明,冷加工显著提升690合金的抗拉强度并降低延伸率和断面收缩率;预充氢显著降低有、无冷加工690合金的延伸率和断面收缩率,并且降低冷加工690合金的抗拉强度;高温水中预浸泡对未冷加工690合金的拉伸性能有一定影响.320℃高温水中测得的抗拉强度、延伸率和断面收缩率均低于室温时的值;高温水中预浸泡对抗拉强度和延伸率的影响不大,使断面收缩率略有增大.","authors":[{"authorName":"夏小峰","id":"a18b9e24-0a02-4f65-9385-cbcc1eac3cef","originalAuthorName":"夏小峰"},{"authorName":"吕战鹏","id":"8563155c-9665-40a6-8c20-83356e9d837b","originalAuthorName":"吕战鹏"},{"authorName":"陈俊劼","id":"073a2d23-5bc2-4faa-a736-22accf5eb9a9","originalAuthorName":"陈俊劼"},{"authorName":"肖茜","id":"4dad22d8-111c-4966-adee-6460d7dc4d1c","originalAuthorName":"肖茜"},{"authorName":"茹祥坤","id":"fea47d3e-b1dc-4009-b456-f7b702e25c01","originalAuthorName":"茹祥坤"},{"authorName":"周邦新","id":"a0a6f4eb-a894-4161-9784-d33d2547a767","originalAuthorName":"周邦新"},{"authorName":"熊茹","id":"1eaf4763-a65f-412e-8b01-ea0989e12e18","originalAuthorName":"熊茹"}],"doi":"","fpage":"170","id":"faa149ef-9594-4452-a2b4-63eb6a158800","issue":"2","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"74cbc485-61db-40a0-9d79-8b1fc87239fc","keyword":"690镍基合金","originalKeyword":"690镍基合金"},{"id":"393eb07e-93e0-48cb-9805-5b74e20762c3","keyword":"压水堆核电站","originalKeyword":"压水堆核电站"},{"id":"a64dfba6-8b12-4761-9e2f-880e72ec0531","keyword":"冷加工","originalKeyword":"冷加工"},{"id":"94b71dcf-bfe9-44d2-8543-887012dcb8aa","keyword":"拉伸试验","originalKeyword":"拉伸试验"},{"id":"73f64505-34df-4f6b-afea-fa9577e42791","keyword":"氢","originalKeyword":"氢"}],"language":"zh","publisherId":"fsyfh201502015","title":"预形变及模拟压水堆一回路水中预浸泡对690合金拉伸性能的影响","volume":"36","year":"2015"}],"totalpage":8706,"totalrecord":87051}