R Escribano
,
R Lostado
,
F J Martínez-de-Pisón
,
A Pernía
,
E Vergara
钢铁研究学报(英文版)
An experience is presented using the finite element method (FEM) and data mining (DM) techniques to develop models that can be used to optimize the skin-pass rolling process based on its operating conditions. A FE model based on a real skin-pass process is built and validated. Based on this model, a group of FE models is simulated with different adjustment parameters and with different materials for the sheet; both variables are chosen from pre-set ranges. From all FE model simulations, a database is generated; this database is made up of the above mentioned adjustment parameters, sheet properties and the variables of the process arising from the simulation of the model. Various types of data mining algorithms are used to develop predictive models for each of the variables of the process. The best predictive models can be used to predict experimentally hard-to-measure variables (internal stresses, internal strains, etc) which are useful in the optimal design of the process or to be applied in real time control systems of a skin-pass process in-plant.
关键词:
skin-pass rolling
,
predictive model
,
finite element method
,
data mining
SUI Feng-li
,
CHEN Qi-wei
,
ZHU Guo-hui
,
LIU Bao-dong
钢铁研究学报(英文版)
An analytic model based on ANSYS/LS-DYNA has been developed on the cold rolling process for Q235 steel rebar with 12 mm in diameter. The elastic-plastic finite element method (FEM) and the cold deformation resistance model of Q235 steel were adopted in this model. Deformation uniformity of the final product has been analyzed using this model. The results indicate that the uniformity of the final product is obtained only as the centerline of the bending rolls is vertical to the centerline of the driven roll and parallel to the centerline of the drive roll in the whole rolling process. Besides, the number of the bending rolls must even realize the continuous bending and reverse bending process. Also, the number of the bending rolls must match the deformation degree of the workpiece in the cold rolling process. The validity of this finite element model was verified by the size and distribution of grains from the billet to the rebar in a practical cold rolling process.
关键词:
deformation uniformity
,
Q235 steel rebar
,
finite element method
,
cold rolling
,
mechanical descaling
LI Yu-gui
,
YE Quan
,
FAN Fei
,
BAO Ye
,
HUANG Qing-xue
钢铁研究学报(英文版)
Blade clearance is an important technical parameter of the shear, which determines the shear quality of plate. The finite element method was used to simulate shearing process which is in the different specifications and blade clearances, and the impact on blade section and shearing force of blade clearance was analyzed. Comparing with traditional experience formulas and measured values, the limitations of the experience formulas were proved. And by contrasting with the shearing force data collected from Linfen Iron and Steel Company, the reliability of the finite element method was further proved. The simulated results show that the simulated values controlled by ductile fracture criterion and measured values are very close, and the deviation value is in the range of 4.8%-20.8%. For the same steel, if the plate is thicker, the blade clearance will be greater, and thickness and blade clearance are approximately linear. The difference between numerical simulation of the maximum shearing force and the measured results is 7.7% to 12.0%, and the simulation results are close to facts. With the increase of blade clearance and the thickness, the shearing force was increased to some degree.
关键词:
blade clearance
,
finite element method
,
experience formula
,
shearing section
,
shearing force