欢迎登录材料期刊网
丁攀 , ,吕福在,项占琴
钢铁研究学报
针对石油套管缺陷超声无损检测(NDT)中缺陷回波的特点,提出了一种基于小波包分解和支持向量机(SVM)的缺陷智能识别新方法。分析了Gabor、小波和小波包3种信号时频变换分解方法的特点,并进行了基于3种方法生成的特征数据可分性比较,确定了小波包分解方法效果最好。根据SVM解决分类问题的原理,采用SVM法对3种时频分解提取的缺陷信号特征数据进行识别。试验表明,基于小波包分解局部熵的特征提取结合SVM模式智能识别的组合方法,可应用于石油套管上的4种典型缺陷的识别。
关键词: 超声无损检测 , wavelet packet decomposition , support vector machine(SVM) , intelligent flaw identification