符史流
,
尹涛
,
柴飞
无机材料学报
doi:10.3724/SP.J.1077.2007.00647
利用高温固相反应法合成了Ca2-xEuxSnO4发光粉末样, 采用X射线衍射技术和荧光光谱等测试手段对样品的固相反应形成机理及光谱特性进行了研究. 对于CaCO3和SnO2(2:1)混合粉料, 在1250℃进行固相反应时将优先反应生成不稳定的中间相CaSnO3, 该相再与CaO继续反应生成最后稳定的目标相Ca2SnO4. Ca2-xEuxSnO 4样品在240~360nm范围内存在着Eu3+-O2-电荷迁移吸收带, 随着Eu3+掺杂浓度(x=0.01~0.15)的增加, 吸收带峰位从274nm红移至292nm附近. Ca2SnO4:Eu3+发光体的发射以电偶极跃迁2D0-7F2为主导地位, 在紫外光激发下产生强的红光发射. 在Ca2SnO4基质中, Eu3+离子的多声子弛豫过程几率小, 当Eu3+掺杂浓度较低时, 可以观察到来自于Eu3+较高激发态能级5D2和5D1上的辐射跃迁. Eu3+离子在同构的Ca2SnO4和Sr2 eO4基质中的发射光谱形状类似, 但Ca2SnO4:Eu3+的红光发射强度远大于Sr2CeO4:Eu3+.
关键词:
Ca2SnO4:Eu3+
,
formation mechanism
,
photoluminescence
,
doping concentration
崔斌
,
杨祖培
,
侯育冬
,
田长生
,
史启祯
无机材料学报
采用半化学法制备了纯钙钛矿相的0.80Ph(Mg1/3Nb2/3)O3-0.20PbTiO3(简称为0.80PMN-0.20PT)陶瓷.反应前驱体是以硝酸镁的饱和溶液代替传统氧化物混合法中的氧化镁,与PbO、Nb2O5和 TiO2混合球磨得到的.该前驱体的TG-DTG-DSC和XRD分析表明,半化学法的反应机理不同于传统氧化物混合法和二次合成法的反应机理.在煅烧过程中,硝酸镁与氧化铅反应生成铅的活化中间体Pb6O5(NO3)2,由此活化的PbO或Pb3O4可与Nb2O5生成不稳定的、缺B位的焦绿石相Pb3Nb2O8;再与MgO反应生成钙钛矿相PMN-PT.
关键词:
半化学法
,
lead magnesium niobate
,
reaction mechanism
,
perovskite phase
刘学建
,
李会利
,
黄政仁
,
王士维
,
江东亮
无机材料学报
doi:10.3724/SP.J.1077.2009.01159
以Al2O3和AlN为原料, 在氮气气氛下通过高温固相反应工艺合成氮氧化铝(AlON)粉体, 借助XRD分析系统研究了反应温度、保温时间及原料配比等工艺参数对反应产物相组成的影响并探讨了反应机理. 研究结果表明:该反应主要受热力学控制, 动力学因素也具有重要作用, 反应温度和保温时间对AlON粉体的合成均具有重要影响. 在相对较低的反应温度下, 通过AlN固溶进入Al2O3晶格形成富氧(O-rich)的AlON相; 在相对较高的反应温度下, 产物中少量残余的AlN通过进一步扩散固溶进入O-rich-AlON晶格形成富氮(N-rich)的AlON相(N-rich-AlON); 在1950℃时, 合成单相的AlON粉体.
关键词:
氮氧化铝(AlON)
,
powders
,
solid-state reaction
,
reactive kinetics
,
reactive mechanism
刘金华
,
王大志
无机材料学报
doi:10.3724/SP.J.1077.2006.00433
用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、热重-差热(TG-DTA)、扫面电子显微镜(SEM)等分析方法对水热改性前及改性不同阶段乌贼骨的矿物组成、表面形貌等进行了表征、分析, 并对水热反应机理进行了研究. 结果显示, 原始乌贼骨主要由棒状文石层堆砌而成, 外观呈多孔的房架式结构. 在磷酸盐溶液中水热处理后, 内部的文石经由固态局部规整离子交换反应(Solid-state topotactic ion exchange reaction)转变为羟基磷灰石, 原来文石结晶体的形貌及规则排列方式没有改变; 而外表面文石则通过溶解-重结晶(Dissolution-recrystallization)过程转变为鳞片
状的羟基磷灰石, 随着水热处理时间的延长, 鳞片状羟基磷灰石进一步自组装成5μm左右的规则圆球, 本文对自组装的机理也做了初步探讨.
关键词:
乌贼骨
,
hydroxyapatite
,
hydrothermal conversion
,
reaction mechanism
李江鸿
,
张红波
,
熊翔
,
肖鹏
,
赵磊
,
黄伯
无机材料学报
doi:10.3724/SP.J.1077.2007.00973
液相先驱体浸渍法制备的C/C-TaC复合材料可望提高C/C复合材料的烧蚀性能. 本研究借助XRD、SEM对含钽树脂先驱体不同温度热处理后物质的成分与形貌进行分析, 并结合钽液的DSC-TG曲线揭示了含钽树脂转变生成TaC过程的反应机理. 研究表明: 含钽树脂中钽液是作为呋喃树脂的固化剂起作用, 显著降低了呋喃树脂的固化温度, 100℃低温热处理树脂便固化, 同时钽液中的TaF5水解生成TaO2F. 在真空保护气氛下, 温度升高到800℃以上, 含钽树脂中的部分TaO2F会分解成Ta2O5和气体TaF5. 随后, Ta2O5在1000℃时开始被树脂炭还原化合生成颗粒尺寸<1μm的TaC颗粒. 要控制钽的损失可通过长时间低温处理(室温~100℃)和通无水氨(150~500℃)来实现.
关键词:
含钽树脂
,
TaC
,
formation mechanism