{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"衡阳镭目公司自主开发研制的结晶器非正弦振动系统,首家采用目前先进成熟的计算机技术与大功率数字伺服电动机,其组合应用是数字技术应用发展的必然结果.其独特的伺服电机直接驱动方式为世界首创.详细阐述了该系统的功能、原理及特点.","authors":[{"authorName":"田志恒","id":"5824b3ad-e214-43f6-a7b1-8bff84f929c4","originalAuthorName":"田志恒"},{"authorName":"田立","id":"723469d0-f4af-41b7-95cf-5c61bb63b64c","originalAuthorName":"田立"},{"authorName":"永辉","id":"25bc8527-1f2f-47dd-bf9d-33e7c36a2799","originalAuthorName":"周永辉"},{"authorName":"谢俊华","id":"356ae22d-6b0e-4e9f-93bf-49016ca7ac8e","originalAuthorName":"谢俊华"},{"authorName":"谢爱国","id":"b8a89a07-415d-418d-9f5a-4e0ac5e0338d","originalAuthorName":"谢爱国"},{"authorName":"陈海云","id":"330fe495-65bd-48df-8f83-7e5a340bf5c0","originalAuthorName":"陈海云"},{"authorName":"周礼荣","id":"5f76e778-d59d-4139-a23b-bc7333b41cdc","originalAuthorName":"周礼荣"},{"authorName":"王雅萍","id":"e912c80b-70ef-4880-821f-363ca514314f","originalAuthorName":"王雅萍"},{"authorName":"罗燕","id":"21cb5589-44ab-475f-aae2-52295ad8df46","originalAuthorName":"罗燕"}],"doi":"","fpage":"623","id":"7e4df9ee-34a0-420f-b885-c3c153a0e86f","issue":"z1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"32fd98a2-484d-4272-879a-4b87f74086a6","keyword":"非正弦振动","originalKeyword":"非正弦振动"},{"id":"50890eba-6c95-4f2b-a73e-60a58881ef1c","keyword":"数字伺服电动缸","originalKeyword":"数字伺服电动缸"},{"id":"01b318d2-0dd4-4912-a3e1-f34c9f327d13","keyword":"振动波形曲线(正弦或非正弦)","originalKeyword":"振动波形曲线(正弦或非正弦)"},{"id":"43eb5d0e-a546-4c52-9a28-0d69857584d1","keyword":"全弧振动","originalKeyword":"全弧振动"},{"id":"01853ea6-3733-4bb7-aa87-98b7c75e5845","keyword":"钢坯质量","originalKeyword":"钢坯质量"},{"id":"aacc8f90-ce4f-4ef5-9d62-157f8a2bb1ed","keyword":"研制","originalKeyword":"研制"}],"language":"zh","publisherId":"gt2004z1152","title":"结晶器非正弦振动系统的开发与应用","volume":"39","year":"2004"},{"abstractinfo":"以YAG(Y3Al5O12,钇铝石榴石,Al2O3和Y2O3的反应产物)为主要助烧剂的SiC/YAG复合陶瓷材料具有许多优良的性能,在诸多领域中存在巨大的应用潜力.综述了近年来SiC/YAG复合陶瓷材料的研究进展,并提出了目前研究工作中尚存在的一些问题,指出SiC/YAG复合陶瓷仍具有广阔的发展前景.","authors":[{"authorName":"梁斌","id":"19cd00a1-be9e-47bf-b3f9-c0ef334cb071","originalAuthorName":"梁斌"},{"authorName":"张宁","id":"f77b7a21-3f23-480b-943c-33290b3b1f78","originalAuthorName":"张宁"},{"authorName":"崔行宇","id":"acf242a5-1514-470a-9ce2-ff852b4bdd9b","originalAuthorName":"崔行宇"},{"authorName":"永辉","id":"1f66e97f-906b-457a-8a61-42eedd780231","originalAuthorName":"周永辉"},{"authorName":"王晓阳","id":"b1733da9-9028-47f0-beeb-553cdfdcb977","originalAuthorName":"王晓阳"},{"authorName":"阚洪敏","id":"2587d817-0c8a-4cb6-bb89-7b528696aa66","originalAuthorName":"阚洪敏"},{"authorName":"才庆魁","id":"00b9dc41-ac32-4334-8d17-5bbead218b7b","originalAuthorName":"才庆魁"}],"doi":"","fpage":"511","id":"a07325e7-5992-4d41-a242-9455b7f81654","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"40a4f5da-1ac5-4d13-a3f5-c737810b9c73","keyword":"碳化硅","originalKeyword":"碳化硅"},{"id":"243651da-6c49-4f01-a280-6ea8a5dd9d9a","keyword":"复合陶瓷","originalKeyword":"复合陶瓷"},{"id":"4b113ae9-7169-4ede-bd6d-e25e48737535","keyword":"钇铝石榴石","originalKeyword":"钇铝石榴石"},{"id":"2f8facb9-f47d-4cf4-a797-e64abae8bfd8","keyword":"烧结工艺","originalKeyword":"烧结工艺"}],"language":"zh","publisherId":"cldb2010z2139","title":"SiC/YAG复合陶瓷材料的研究进展","volume":"24","year":"2010"},{"abstractinfo":"论述了超高疲劳研究的背景及意义,总结了近年来超高疲劳的研究成果包括超高疲劳的典型特征如S-N曲线、裂纹起源、起裂机理、影响超高疲劳行为的因素等,介绍了超高疲劳的常用实验手段,提出了今后超高疲劳研究的课题.","authors":[{"authorName":"关昕","id":"0ac19842-8b56-426f-8905-2388e7a25b47","originalAuthorName":"关昕"},{"authorName":"孟延军","id":"58d24d51-0717-4882-bcd8-6c2afb28dd18","originalAuthorName":"孟延军"}],"doi":"","fpage":"58","id":"e4637bac-c1ab-4be4-843c-0b2fc9d06e80","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"fc7ed857-e1c0-43de-9636-ad6114993fd8","keyword":"超高疲劳","originalKeyword":"超高周疲劳"},{"id":"10ad3e45-0a4e-4eb7-9a69-588ccacf882e","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"8217367e-ada6-4836-a546-fc39c08018ab","keyword":"疲劳裂纹萌生","originalKeyword":"疲劳裂纹萌生"},{"id":"6ef2ce57-4acd-4632-a6d5-c41726a86dba","keyword":"超声疲劳实验","originalKeyword":"超声疲劳实验"}],"language":"zh","publisherId":"gtyj200901018","title":"超高疲劳的研究进展","volume":"37","year":"2009"},{"abstractinfo":"研究了不同温度下TC17合金低疲劳性能和断口形貌,确定了不同温度下合金低疲劳曲线的数学表达式,分析了合金棒材低疲劳断口形貌特征.","authors":[{"authorName":"张翥","id":"08f7ef9f-76b4-43b4-a22c-5e4c97332d9c","originalAuthorName":"张翥"},{"authorName":"惠松骁","id":"95300b8b-74b1-4a44-9a99-d5da348d9ace","originalAuthorName":"惠松骁"},{"authorName":"路纲","id":"b4d1bce2-6620-453b-ab68-5919f79cf6a5","originalAuthorName":"路纲"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.079","fpage":"267","id":"5245b7d9-ad01-42aa-96ae-965e18ec3e68","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1ab386e7-9137-42ac-932c-aad72f085293","keyword":"低疲劳","originalKeyword":"低周疲劳"},{"id":"707dc835-b982-4d1a-8bac-aaf2daa1a891","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"84cd2432-b6a6-470a-93bc-ec98a918a3b5","keyword":"TC17钛合金","originalKeyword":"TC17钛合金"}],"language":"zh","publisherId":"jsxb2002z1079","title":"TC17合金低疲劳性能与低疲劳断口形貌","volume":"38","year":"2002"},{"abstractinfo":"对高疲劳和低疲劳寿命预测模型进行了研究,提出了一种能够将高疲劳和低疲劳统一表征的能量形式参量.用统一的能量形式表征参量对高温合金GH141的760℃高疲劳和低疲劳数据进行处理,得到理想的能量-寿命方程.用1Cr11Ni2W2MoV钢500℃和粉末盘材料FGH95的600℃高温低疲劳和高疲劳数据对统一表征方法进行验证,验证结果表明,用能量形式的表征参量能够得到理想的能量-寿命方程.","authors":[{"authorName":"许超","id":"b736c564-a712-4cae-ba28-e1f545e3fbee","originalAuthorName":"许超"},{"authorName":"张国栋","id":"1c3a219e-8948-44a2-ac77-d7a1db019a04","originalAuthorName":"张国栋"},{"authorName":"苏彬","id":"115a0fbf-8817-41cd-8719-b1cf173341c4","originalAuthorName":"苏彬"}],"doi":"10.3969/j.issn.1001-4381.2007.08.016","fpage":"65","id":"90ae7451-07db-49d8-bc65-8529908ec2cb","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"fa75e230-7af7-47c8-af9d-3a42d6a0957a","keyword":"高疲劳","originalKeyword":"高周疲劳"},{"id":"fff773bd-ef31-49d2-a540-5c0587429d8e","keyword":"低疲劳","originalKeyword":"低周疲劳"},{"id":"7e70aa0a-f69e-49d8-90a4-c7e78e1e84d8","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"120f5885-b123-425d-9772-e00834ea620b","keyword":"能量表征","originalKeyword":"能量表征"},{"id":"2778e939-7c24-4364-bc09-9b7d01d11edf","keyword":"高温合金","originalKeyword":"高温合金"}],"language":"zh","publisherId":"clgc200708016","title":"高疲劳和低疲劳统一的能量表征方法研究","volume":"","year":"2007"},{"abstractinfo":"分析了金属材料超高疲劳断口形貌特征,介绍了基于Paris公式的裂纹扩展寿命预测模型和基于位错理论的疲劳裂纹萌生寿命预测模型,并结合前期有关金属材料超高疲劳行为的试验数据,对2种预测模型的误差进行分析.结果表明,基于位错理论的寿命预测模型较为准确;而基于Paris公式的裂纹扩展寿命预测模型,其预测精度随着疲劳寿命的增加而降低,即材料组织缺陷萌生成为疲劳裂纹阶段占据疲劳寿命的绝大部分.在此基础上,提出了超高疲劳寿命预测的研究方向:疲劳裂纹的萌生机制,特别是裂纹源表面萌生和内部萌生的竞争性机制;建立大样本数据,结合统计学方法,以工程构件的服役安全性和可靠性为基础,精确评价超高疲劳寿命.","authors":[{"authorName":"宋亚南","id":"a3f57d8d-e363-4060-b147-c679dc69b63c","originalAuthorName":"宋亚南"},{"authorName":"徐滨士","id":"420e93bc-bf6e-4637-8f47-a160b0081bae","originalAuthorName":"徐滨士"},{"authorName":"王海斗","id":"1ae8eda4-1c15-49a9-a0ed-b1d1cf5cb8f5","originalAuthorName":"王海斗"},{"authorName":"张玉波","id":"0da25032-c90c-4137-940f-b98b99e26de9","originalAuthorName":"张玉波"},{"authorName":"邢志国","id":"ba8df743-30b2-407a-86a5-99f41317fc27","originalAuthorName":"邢志国"}],"doi":"","fpage":"1203","id":"46f40732-c34d-4b6a-a141-61b1d14d4a90","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"7079c771-b3ea-4858-b4d1-88626ec086d0","keyword":"超高疲劳","originalKeyword":"超高周疲劳"},{"id":"b9d90b52-0489-4b16-bee0-245406d58655","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"61dc2b24-54c7-4dc5-91cb-2ff12a621d81","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"024a9c21-6f1c-4eda-b6ca-94c63c6a8825","keyword":"预测误差","originalKeyword":"预测误差"}],"language":"zh","publisherId":"xyjsclygc201605020","title":"超高疲劳寿命预测方法探讨","volume":"45","year":"2016"},{"abstractinfo":"研究了铸造Ti-46.5Al-5Nb(原子分数,%)合金的高疲劳行为.结果表明:Ti-46.5Al-5Nb合金具有较好的室温高疲劳性能,其疲劳极限σ-1=510 MPa,与合金的断裂强度σb的比值为1.1.试样的形状对Ti-46.5Al-5Nb合金的室温拉伸强度影响较大,由此可以解释合金的疲劳强度与断裂强度的比值大于1.同时,用扫描电镜对合金的高疲劳断口进行了观察.","authors":[{"authorName":"崔玉友","id":"6d2f0780-4421-413f-81a5-9a1c8faf287d","originalAuthorName":"崔玉友"},{"authorName":"杨锐","id":"21b4654d-c517-41f1-928b-985f08b14dad","originalAuthorName":"杨锐"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.156","fpage":"497","id":"221aa2f4-ff60-4489-8628-d051a4e9f81f","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a0ac415a-bf8f-48df-9975-1cc4a8e17e5d","keyword":"Ti-46.5Al-5Nb合金","originalKeyword":"Ti-46.5Al-5Nb合金"},{"id":"da3c909c-c444-4c02-b29a-0fe1dd5bf4d5","keyword":"高疲劳","originalKeyword":"高周疲劳"},{"id":"a237702e-9a16-4d44-a4d9-b5aab4e1ae36","keyword":"疲劳强度","originalKeyword":"疲劳强度"}],"language":"zh","publisherId":"jsxb2002z1156","title":"γ-TiAl合金的高疲劳行为","volume":"38","year":"2002"},{"abstractinfo":"研究了缺口对TC21合金在不同温度高和低疲劳强度的影响.疲劳试样为光滑和V型缺口(Kt=3)2种试样,疲劳载荷为应力控制,循环应力比为0.1,高疲劳实验温度为315 ℃,低疲劳实验温度为室温及400℃.结果表明,在循环应力较低,缺口根部未塑性变形时,缺口使疲劳强度明显降低.循环应力升高使缺口根部产生塑性变形时,缺口对疲劳强度影响降低,当循环应力升高使光滑试样失稳时,缺口试样的疲劳强度高于光滑试样的疲劳强度.断口的SEM分析表明,缺口试样的疲劳裂纹在缺口根部萌生,即使高疲劳裂纹源也是多个.","authors":[{"authorName":"虞忠良","id":"abd87fe1-a537-4e20-88b7-1a3c2e7e3b40","originalAuthorName":"虞忠良"},{"authorName":"赵永庆","id":"f78ead44-ed40-4d1d-9204-8b1b6d7081ef","originalAuthorName":"赵永庆"},{"authorName":"廉","id":"ba405ddd-36d0-45b7-8983-0df416ab9461","originalAuthorName":"周廉"},{"authorName":"孙军","id":"8297e21f-dcea-438d-a80a-8c632bd1e6e4","originalAuthorName":"孙军"},{"authorName":"曲恒磊","id":"8a66dc34-2d0f-4090-a9a9-670102dd7230","originalAuthorName":"曲恒磊"}],"doi":"","fpage":"1523","id":"7955c589-1b59-47f4-bb9f-7d679859aaf0","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4e50aa0a-33ef-4707-9e50-160f353e558d","keyword":"TC21合金","originalKeyword":"TC21合金"},{"id":"a8face36-e694-42c1-b806-a48bce001b58","keyword":"缺口","originalKeyword":"缺口"},{"id":"357af210-c719-4951-a799-b2d1eb8c2244","keyword":"高疲劳","originalKeyword":"高周疲劳"},{"id":"d5432717-2565-4501-9190-8b125da0f26e","keyword":"低疲劳","originalKeyword":"低周疲劳"}],"language":"zh","publisherId":"xyjsclygc200709004","title":"缺口对TC21合金高和低疲劳的影响","volume":"36","year":"2007"},{"abstractinfo":"采用超声疲劳试验技术对304不锈钢超高疲劳性能进行了研究,并用扫描电镜对疲劳断口进行了分析.结果表明:304不锈钢在105~1010次范围内的S-N曲线呈阶梯型下降趋势;在106~108次出现平台,平台对应应力幅约为200 MPa;在平台应力以下,108次以上超高范围304不锈钢仍然发生疲劳断裂,不存在传统意义的疲劳强度;高和超高断裂试样的裂纹主要从试样表面萌生.","authors":[{"authorName":"张真源","id":"1e495d36-ab34-44b2-a4a5-6580018266bd","originalAuthorName":"张真源"},{"authorName":"王弘","id":"3559134c-d467-400b-9b4b-5cd0522d0fb4","originalAuthorName":"王弘"}],"doi":"10.3969/j.issn.1000-3738.2008.01.023","fpage":"79","id":"90adace5-2f7b-4536-ba84-f44523c00fd6","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"2cce6bfe-e507-4b4b-8748-bb4dd5c2d2c0","keyword":"超高疲劳","originalKeyword":"超高周疲劳"},{"id":"f83ce778-6d3a-4685-8e82-4efce41a6ed9","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"4070959a-3f57-4ace-89e9-00a024b40430","keyword":"304不锈钢","originalKeyword":"304不锈钢"}],"language":"zh","publisherId":"jxgccl200801023","title":"304不锈钢的超高疲劳性能","volume":"32","year":"2008"},{"abstractinfo":"研究了GH586合金750 ℃的低疲劳性能,并对疲劳机制进行了分析讨论.结果表明:GH586合金具有很高的抗高温低疲劳性能,疲劳裂纹产生于合金表面.","authors":[{"authorName":"焦兰英","id":"c822bfa4-9e98-44f0-8a34-c9a22d3d8151","originalAuthorName":"焦兰英"},{"authorName":"黄进峰","id":"91d158a4-77a6-497b-a5d7-7d0c96eed806","originalAuthorName":"黄进峰"},{"authorName":"赵光普","id":"d3826537-8226-4d47-9115-f232fa603d30","originalAuthorName":"赵光普"}],"doi":"","fpage":"48","id":"e122c94e-efa8-496a-a157-1716c2d88e00","issue":"2","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"93ff43f8-7228-4d0c-861d-74248dc5a985","keyword":"高温合金","originalKeyword":"高温合金"},{"id":"15bad842-c3c3-4888-a925-3a421a06ce71","keyword":"低疲劳","originalKeyword":"低周疲劳"},{"id":"0cc1bc00-2ba6-4d77-b808-dcd930ee104b","keyword":"断口分析","originalKeyword":"断口分析"},{"id":"d9c70251-c389-4eeb-aeb7-35b6c33bf7ef","keyword":"GH586","originalKeyword":"GH586"}],"language":"zh","publisherId":"gtyjxb200302012","title":"GH586合金的高温低疲劳特征","volume":"15","year":"2003"}],"totalpage":151,"totalrecord":1501}