{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用在乙醇溶剂中以H2O2预氧化/纳米锌粉,再在较高温度下热氧化的方法制备了高质量的ZnO粉末.通过X射线衍射、场发射电子显微镜、热重-差示扫描量热等方法对制备产物进行了相关表征.根据PBR金属氧化理论和相关分析结果研究了/纳米锌粉不同的氧化生长机制,并建立了/纳米锌粉的晶体生长模型.","authors":[{"authorName":"桂阳海","id":"2761afee-e35e-4eee-9e3b-409c77bfeaad","originalAuthorName":"桂阳海"},{"authorName":"","id":"76644c21-41b5-4b01-adc2-453eed930c5a","originalAuthorName":""},{"authorName":"张勇","id":"1eb1cf03-d2d0-4575-90cf-992ed466e59a","originalAuthorName":"张勇"},{"authorName":"","id":"bc5ec5cf-0490-4cc5-9d03-602626c30de0","originalAuthorName":""},{"authorName":"王焕新","id":"1c9c7471-04c3-4baf-bc35-395fa68dda18","originalAuthorName":"王焕新"}],"doi":"","fpage":"1016","id":"afe081b6-d564-46f4-826e-14fec2f01b3e","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"eeae4bac-5481-4b78-94c2-65c161599e9c","keyword":"/纳米锌粉","originalKeyword":"微/纳米锌粉"},{"id":"518d07c7-9367-4841-8b80-482f0f205f17","keyword":"氧化锌","originalKeyword":"氧化锌"},{"id":"9c859dbf-0513-4ad9-9a60-438ceff62c31","keyword":"氧化","originalKeyword":"氧化"},{"id":"4c523c04-dfb9-4a42-9f64-0e4a12c2c154","keyword":"晶体生长","originalKeyword":"晶体生长"}],"language":"zh","publisherId":"rgjtxb98200804049","title":"/纳米锌粉两步氧化法制备ZnO的机理研究","volume":"37","year":"2008"},{"abstractinfo":"采用湿式微轧法制备片径为15~25 μm的片状锌粉,研究轧介质、轧溶剂、轧温度和轧时间等对片状锌粉制备的影响,探讨轧力对锌粉片状化的作用机制.结果表明,轧过程中以轧力为理论依据对锌粉片状化的工艺条件进行调整,可制得平均粒径大约20 μm的片状锌粉,其粒径与形貌接近国外的锌粉产品.","authors":[{"authorName":"乔素梅","id":"e1818120-9211-46ae-8e39-fbebdc2d6fe9","originalAuthorName":"乔素梅"},{"authorName":"葛晓陵","id":"7deb6fcf-d499-43e1-af68-0da1a5486680","originalAuthorName":"葛晓陵"},{"authorName":"杨刚","id":"f59f3160-d356-42d3-8b70-e3864cd6d9fc","originalAuthorName":"杨刚"}],"doi":"10.3969/j.issn.2095-1744.2013.02.003","fpage":"24","id":"1a8d90f8-cbf5-48d7-89d1-ad5e967f732b","issue":"2","journal":{"abbrevTitle":"YSJSGC","coverImgSrc":"journal/img/cover/YSJSGC.jpg","id":"76","issnPpub":"2095-1744","publisherId":"YSJSGC","title":"有色金属工程"},"keywords":[{"id":"d2d43486-8e0d-4398-b2bf-7d8c4388fdaf","keyword":"片状锌粉","originalKeyword":"片状锌粉"},{"id":"bbe17cd7-ed31-4d4f-9fa7-d3afbb6ca990","keyword":"轧法","originalKeyword":"微轧法"},{"id":"8a289bf0-eec3-4735-9e5e-8e3bd238897a","keyword":"工艺条件","originalKeyword":"工艺条件"},{"id":"cbcf8fcc-b239-4fe1-b70f-fc014b7c8a8c","keyword":"成片规律","originalKeyword":"成片规律"}],"language":"zh","publisherId":"ysjs201302009","title":"湿式微轧法制备纳米片状锌粉","volume":"3","year":"2013"},{"abstractinfo":"研究了包覆剂、研磨剂及其添加量、轧制和球磨等工艺参数对超锌粉性能的影响,结果表明,以最佳制备工艺获得的锌粉呈鳞片状,中位径为23.72μm,90%集中在10~40μm之间,厚度在0.1~0.6μm之间,氧化度为6.02%,白亮度较好.","authors":[{"authorName":"徐金富","id":"36d7d442-7cf9-4eb9-82ce-992f8603e531","originalAuthorName":"徐金富"},{"authorName":"张亚非","id":"c9b2b373-8c49-4895-af3c-608252bd1e68","originalAuthorName":"张亚非"},{"authorName":"王亮","id":"6e98e41a-223c-4f4e-a587-eb16d9373c28","originalAuthorName":"王亮"},{"authorName":"桂尤国","id":"5f3e97ee-0054-448c-be70-f9e76da34621","originalAuthorName":"桂尤国"},{"authorName":"叶以富","id":"770ea104-48dd-4050-8258-f87e1997a90e","originalAuthorName":"叶以富"}],"doi":"10.3969/j.issn.1003-1545.2005.03.009","fpage":"28","id":"e53a1896-dfe1-4fc8-aca4-7ea92c00db3d","issue":"3","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"cc110174-c5e1-48a7-a543-32f135f15c58","keyword":"超锌粉","originalKeyword":"超微锌粉"},{"id":"82ad69a8-4c6a-4d31-a682-b6c589256c52","keyword":"包覆剂","originalKeyword":"包覆剂"},{"id":"0c5b8c75-bc11-490d-80f6-38af8bc4328d","keyword":"轧制","originalKeyword":"轧制"},{"id":"8ffb74a6-1a86-4926-b20c-24a818bcb206","keyword":"球磨","originalKeyword":"球磨"}],"language":"zh","publisherId":"clkfyyy200503009","title":"鳞片状超锌粉制备工艺的研究","volume":"20","year":"2005"},{"abstractinfo":"用桶体容积为2.5 L的高效振动磨,以平均粒径为3 μm的高纯锌粉(锌含量不低于95%)为原料,以3.3%硬脂酸为分散剂,在氩气保护下进行研磨加工,制备出片状纳米锌粉,并进行了XRD和TEM分析.结果表明:片状纳米锌粉平均粒径在10 nm以下,晶面间距为0.21 nm,结晶程度良好.","authors":[{"authorName":"周华江","id":"1b289679-041b-4676-b1f6-c2d8cfb9e621","originalAuthorName":"周华江"},{"authorName":"王树林","id":"523c9901-3e88-4c25-b3a9-3e15d354567b","originalAuthorName":"王树林"},{"authorName":"邓彬","id":"f8867ed8-c63c-4197-8660-62fe8ee613a3","originalAuthorName":"邓彬"},{"authorName":"陈新龙","id":"b5f25585-c68e-4d57-aee4-afefbebc3cce","originalAuthorName":"陈新龙"}],"doi":"10.3969/j.issn.1000-3738.2005.09.019","fpage":"62","id":"efb64a5d-067b-4681-b6b2-a5e47eaa0428","issue":"9","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"fd2cd349-9e32-42bb-9f09-20ed97d2ebbf","keyword":"片状纳米","originalKeyword":"片状纳米"},{"id":"4c6fbde2-b93e-43f2-afd6-c89c537f04b1","keyword":"锌粉","originalKeyword":"锌粉"},{"id":"a39dff91-f1b8-494e-b17e-e31ede9f84af","keyword":"振动磨","originalKeyword":"振动磨"}],"language":"zh","publisherId":"jxgccl200509019","title":"片状纳米锌粉的振动磨制备与表征","volume":"29","year":"2005"},{"abstractinfo":"用电化学阻抗谱(EIS)技术研究了添加不同质量\n百分比浓度的纳米锌粉环氧涂层的腐蚀电化学行为,并与环氧清漆(不含颜料)涂层的腐蚀电化学行为进行对比.结果表明,添加不同质量百分比浓度纳米锌粉环氧涂层与环氧清漆涂层具有不同的电化学阻抗谱特征.纳米锌粉的添加量对涂层的防护性能有显著影响,添加不同质量百分比浓度纳米锌粉环氧涂层防腐蚀性能的优劣顺序为:环氧清漆涂层>20mass%>10mass%>2mass%纳米锌环氧涂层.添加纳米锌粉对环氧涂层的防护性能有2方面的影响:一方面使涂层中的微观缺陷大大增多,涂层的防护性能降低;另一方面,由于锌粉的腐蚀产物可将涂层中部分缺陷堵塞,从而对涂层的防护性能有提高作用.由于在所研究的质量百分比浓度范围内(2mass%~20mass%),前者起了主导作用,所以综合作用的结果是使涂层的防护性能变差.\n\n\n\n\n\n\ns.","authors":[{"authorName":"刘斌","id":"ad115200-b4d1-4f9c-afa7-8611e87a4475","originalAuthorName":"刘斌"},{"authorName":"李瑛","id":"eddd12a1-7452-4c6c-b7ac-0a0198a7b388","originalAuthorName":"李瑛"},{"authorName":"王福会","id":"2d82a1dd-1ece-4459-a3cd-b872bbb9d524","originalAuthorName":"王福会"}],"categoryName":"|","doi":"","fpage":"9","id":"77737c2e-7944-4a7c-8fa0-b50444d816fa","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"4b97aaf9-df25-4de6-8b67-6459a7ac5491","keyword":"纳米锌粉","originalKeyword":"纳米锌粉"},{"id":"e9f7e0eb-98ad-4140-842f-0359d325a592","keyword":"\nnano-sized zinc","originalKeyword":"\nnano-sized zinc"},{"id":"1a86b4c4-f3e7-46eb-971a-c66978c45ee9","keyword":"electrochemical behavior","originalKeyword":"electrochemical behavior"}],"language":"zh","publisherId":"1002-6495_2004_1_3","title":"添加纳米锌粉环痒涂层腐蚀电化学行为","volume":"16","year":"2004"},{"abstractinfo":"用电化学阻抗谱(EIS)技术研究了添加不同质量百分比浓度的纳米锌粉环氧涂层的腐蚀电化学行为,并与环氧清漆(不含颜料)涂层的腐蚀电化学行为进行对比.结果表明,添加不同质量百分比浓度纳米锌粉环氧涂层与环氧清漆涂层具有不同的电化学阻抗谱特征.纳米锌粉的添加量对涂层的防护性能有显著影响,添加不同质量百分比浓度纳米锌粉环氧涂层防腐蚀性能的优劣顺序为:环氧清漆涂层>20mass%>10mass%>2mass%纳米锌环氧涂层.添加纳米锌粉对环氧涂层的防护性能有2方面的影响:一方面使涂层中的微观缺陷大大增多,涂层的防护性能降低;另一方面,由于锌粉的腐蚀产物可将涂层中部分缺陷堵塞,从而对涂层的防护性能有提高作用.由于在所研究的质量百分比浓度范围内(2mass%~20mass%),前者起了主导作用,所以综合作用的结果是使涂层的防护性能变差.","authors":[{"authorName":"刘斌","id":"326e2501-f301-4f40-9afd-e686e368b84f","originalAuthorName":"刘斌"},{"authorName":"李瑛","id":"7a1b0a95-358f-4537-96e7-fc303d0c7ee7","originalAuthorName":"李瑛"},{"authorName":"王福会","id":"ac6fb26f-2060-48c3-87c8-899b4390f7f8","originalAuthorName":"王福会"}],"doi":"10.3969/j.issn.1002-6495.2004.01.003","fpage":"9","id":"b8fcc832-1c1d-41ca-b442-5fb26807911d","issue":"1","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"288402b4-5dc7-41b2-960b-dd788b5114b1","keyword":"纳米锌粉","originalKeyword":"纳米锌粉"},{"id":"9a1a6675-b47b-4fb2-b8ac-48dbebabf89d","keyword":"环氧涂层","originalKeyword":"环氧涂层"},{"id":"a390ec1f-fc95-4e7e-a031-1a8773104c65","keyword":"腐蚀电化学","originalKeyword":"腐蚀电化学"},{"id":"f178c9e5-bd22-4049-80fc-dcbe863828e3","keyword":"电化学阻抗谱","originalKeyword":"电化学阻抗谱"}],"language":"zh","publisherId":"fskxyfhjs200401003","title":"添加纳米锌粉环氧涂层腐蚀电化学行为","volume":"16","year":"2004"},{"abstractinfo":"采用水热法合成了氧化锌纳米棒,研究了不同合成条件对ZnO纳米晶的影响.采用碱式碳酸锌作为前驱体,水为水热介质,可获得氧化锌纳米棒,水热时间的延长和水热温度的提高都使氧化锌纳米棒的长径比减小,其紫外发射光和近红外发射强度增大.当在体系中加入聚乙二醇时,可获得片状氧化锌结晶.当以0.5 mol/L的碳酸钠水溶液为水热介质,可得到长径比超过20,直径为500 nm左右分散均匀的纳米氧化锌棒.以氢氧化锌为前驱体,也能得到氧化锌纳米棒,其长径比为15左右.","authors":[{"authorName":"王艳香","id":"849f7c89-455d-475b-a29a-daddd70b1da0","originalAuthorName":"王艳香"},{"authorName":"","id":"472c3b9f-0a86-42d1-96d6-fa247e8a5114","originalAuthorName":""},{"authorName":"范学运","id":"39a6bf2f-fd95-4c4a-8228-89a7177442f0","originalAuthorName":"范学运"},{"authorName":"","id":"31e51e4b-9c17-4384-bccc-2ba64091376a","originalAuthorName":""}],"doi":"","fpage":"866","id":"9f7b93dd-12e9-4ab7-97ba-2c4cc2e5c35d","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"11fcfb37-6c2e-4c75-9ff3-dbc0acca150c","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"cd7956af-a456-4446-9e1a-468a64f5cef4","keyword":"氧化锌","originalKeyword":"氧化锌"},{"id":"a7505661-fc79-43cc-a27b-de700e8912be","keyword":"纳米棒","originalKeyword":"纳米棒"}],"language":"zh","publisherId":"rgjtxb98200804020","title":"水热合成法制备纳米氧化锌粉","volume":"37","year":"2008"},{"abstractinfo":"本文采用水热和溶剂热法制备了粒状、棒状、片状、管状纳米氧化锌粉体,并对四种不同形貌的氧化锌粉的光学性能进行了对比研究.结果表明:氧化锌纳米粒,纳米片和纳米管在200~400 nm区域的反射率均低于8%,而氧化锌纳米棒在200~400 nm区域的反射率大约为18%.氧化锌纳米管对甲基橙的光催化降解效果最好,在距离30 cm 的30 W紫外灯条件下进行照射,8 h完全降解,而氧化锌纳米棒对甲基橙的光催化降解效果最差,在相同的实验条件下,氧化锌纳米棒的降解率仅为70%.","authors":[{"authorName":"范学运","id":"a7e14128-b3f4-4497-8f72-4ef1bfd66d9e","originalAuthorName":"范学运"},{"authorName":"王艳香","id":"3e0f5975-dc59-4816-8bf9-139aa21e47ff","originalAuthorName":"王艳香"},{"authorName":"孙健","id":"7dd0002a-3a25-4983-9478-19639ad7522a","originalAuthorName":"孙健"},{"authorName":"余熙","id":"6614bd9b-94e2-4408-adf2-12754084e8fe","originalAuthorName":"余熙"}],"doi":"","fpage":"994","id":"9f997781-1c84-4c51-bc8f-a0fc2189fbeb","issue":"4","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"fa42e18e-e8fe-4ad8-b476-8beb3c039eab","keyword":"纳米氧化锌","originalKeyword":"纳米氧化锌"},{"id":"d00f426e-7dc7-4681-bb43-95b795e17001","keyword":"溶剂热合成","originalKeyword":"溶剂热合成"},{"id":"c8390776-6a91-4181-8507-bf4c99c86770","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"bffd7c5c-4a6f-46be-af4e-a7b57f9dbb1d","keyword":"光学性能","originalKeyword":"光学性能"}],"language":"zh","publisherId":"rgjtxb98200904040","title":"不同形貌的纳米氧化锌粉的光学性能研究","volume":"38","year":"2009"},{"abstractinfo":"采用液相共沉淀方法,以ZnSO4·7H2O为原料,GaCl3为掺杂化合物,NH4HCO3为沉淀剂合成碱式碳酸锌前驱体,通过在H2气氛下煅烧,制得Ga3+均匀掺杂的纳米氧化锌导电粉体.利用SEM,TEM,XRD,XPS和BET等分析手段对粉体的性能进行表征.结果表明,这种方法合成的导电氧化锌粉体材料颗粒尺寸较小、粒度分布均匀(约在20 nm~40 nm的范围内),颗粒呈类球状形貌,具有较好的分散性能.研究了Ga3+掺杂对氧化锌粉体导电性能的影响.结果表明,在Ga3+掺杂量为2.2mol%时,制得的氧化锌粉体的导电性能最好,体积电阻率达到2.0Ω·cm.","authors":[{"authorName":"杜尚丰","id":"3ec6cf52-6792-412c-90ae-8dc81dc6199a","originalAuthorName":"杜尚丰"},{"authorName":"高卫民","id":"9f9c6b8a-5b26-4de9-a529-f73c57d014bc","originalAuthorName":"高卫民"},{"authorName":"刘建","id":"cf8b4816-88a8-4cae-8546-a588ad022ee1","originalAuthorName":"刘建"},{"authorName":"陈运法","id":"b45e3e59-30f4-4aa9-9294-941d441c29fe","originalAuthorName":"陈运法"},{"authorName":"梁云","id":"55f8f263-095c-449f-805b-d98ba5e3238a","originalAuthorName":"梁云"}],"doi":"","fpage":"1139","id":"9c69a6fa-7009-47c8-b287-091bdc2141ae","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4a1a0430-abbe-4ebb-82a4-66cb54c16f8f","keyword":"导电氧化锌","originalKeyword":"导电氧化锌"},{"id":"1e9a5cd2-dc7b-48cd-b879-c49987630187","keyword":"Ga3+掺杂","originalKeyword":"Ga3+掺杂"},{"id":"2158cde8-96a3-4fb1-9d00-bddb009a4be0","keyword":"共沉淀","originalKeyword":"共沉淀"}],"language":"zh","publisherId":"xyjsclygc200607031","title":"Ga3+掺杂对纳米氧化锌粉体导电性能的影响","volume":"35","year":"2006"},{"abstractinfo":"超声辐射Fe(NO3)3·9H2O、不同锌盐和脲的混合水溶液得到前驱体,再经过高温焙烧得到纳米ZnFe2O4粉末.得到的纳米ZnFe2O4粉末用X射线衍射(XRD),傅立叶转换红外光谱(FT-IR)表征得到确认.系统研究了超声波化学法制备纳米铁酸锌粉末工艺中不同锌盐、超声波辐射时间、焙烧温度和焙烧时间等影响因素,结果表明:Fe(NO3)3·9H2O与Zn(NO3)2·6H2O为原料,超声波辐射为4h,焙烧温度为950q℃,焙烧时间为14h可制备结晶良好、分散性好、粒度小于100nm的尖晶石型铁酸锌粉末.","authors":[{"authorName":"吕维忠","id":"bafca253-d84f-432e-abb4-eafcf2e67838","originalAuthorName":"吕维忠"},{"authorName":"刘波","id":"8adbc121-9d98-41c8-bc30-6f2a4c66230a","originalAuthorName":"刘波"},{"authorName":"罗仲宽","id":"b5fbb14e-f1ba-4241-8580-c491ad8d69b5","originalAuthorName":"罗仲宽"},{"authorName":"任祥忠","id":"45e61de5-e016-4966-b6f8-50c873c1bc50","originalAuthorName":"任祥忠"},{"authorName":"蔡弘华","id":"a21a344c-c366-4f26-92be-e8a2a86c89f8","originalAuthorName":"蔡弘华"},{"authorName":"张培新","id":"aa9f84e6-1765-47ae-b842-39e025b58c92","originalAuthorName":"张培新"},{"authorName":"刘剑洪","id":"4c3dfefb-bbcf-46fb-b11d-db9c9b679244","originalAuthorName":"刘剑洪"}],"doi":"10.3969/j.issn.1673-2812.2007.05.009","fpage":"686","id":"c7fbd54d-6a01-455d-a7af-5219170e47ae","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"6f914916-96c1-4c91-938f-a114beede57b","keyword":"铁酸锌","originalKeyword":"铁酸锌"},{"id":"cf5c81a4-5fe4-4667-8d88-249bfd32a1a9","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"e013245a-3c07-4767-add3-08d0132b903e","keyword":"超声波化学","originalKeyword":"超声波化学"}],"language":"zh","publisherId":"clkxygc200705009","title":"超声波化学法制备纳米铁酸锌粉末的影响因素","volume":"25","year":"2007"}],"totalpage":3405,"totalrecord":34046}