史菲
,
王春青
,
郭学锋
稀有金属材料与工程
采用普通凝固技术制备了含有长周期堆垛有序(long period stacking ordered,LPSO)结构相的Mg92Zn4Y4和Mg92Zn4Y3Gd1合金.通过OM、SEM、EDS、XRD和TEM分析了合金中各相形貌、微区成分及结构.结果表明:Zn/RE原子比为l的2种铸态镁合金中均存在14H-LPSO结构相;在Mg-Zn-Y合金中添加稀土元素Gd增加了合金的形核质点并促进了长周期堆垛有序结构相的形成,14H-LPSO相体积分数由l2.1%增至30.4%;LPSO结构相在高温形成时分割了α-Mg树枝晶,基体平均晶粒尺寸由50 μm降至10 μm以下;铸态Mg92Zn4Y4合金的凝固组织为α-Mg固溶体+Mg12ZnY+Mg3Zn3Y2+Mg-Y;铸态Mg92Zn4Y3Gd1合金的凝固组织主要为α-Mg固溶体+Mg12Zn(Y,Gd)+Mg3Zn3(Y,Gd)2;室温条件下,Mg92Zn4Y4和Mg92Zn4Y3Gd1合金的压缩率达到12.4%和15.5%,热导率分别为99.233和88.639W·(m·K)-1.
关键词:
铸态Mg-Zn-Y(-Gd)合金
,
长周期堆垛有序结构
,
稀土
,
热导率
,
压缩塑性
吴玉娟
,
丁文江
,
彭立明
,
曾小勤
,
林栋樑
中国材料进展
随着近年来汽车等工业节能减排对更高性能轻质镁合金的迫切需求,镁合金在工业应用中展现出了很大的发展前途.稀土镁合金系由于具有高温强度高、优良抗蠕变性能及耐热性能以及良好的塑性和耐腐蚀性等高性能,已经成为越来越受到重视的镁合金系之一,并在航空航天、电子、汽车、通讯等领域得到了广泛应用.目前,国内外已开发了Mg-Gd、Mg-Y、Mg-Gd-Y、Mg-Y-Gd等一系列稀土镁合金.综述了高性能稀土镁合金的研究进展和应用现状,主要介绍了Mg-Y和Mg-Gd二元和多元合金系的研究开发及应用的新进展,以及含长周期堆垛有序结构(Long Period Stacking Ordlered Structure,简称LPSO结构)的Mg-Y-Zn、Mg-Gd-Zn、Mg-Gd-Y-Zn、Mg-Y-Gd-Zn合金系的研究现状.最后,展望了高性能稀土镁合金的发展趋势.
关键词:
镁合金
,
高性能稀土镁合金
,
长周期堆垛有序结构
,
镁合金研发
刘欢
,
薛烽
,
白晶
,
周健
,
孙扬善
稀有金属材料与工程
研究了Mg-2Y-xZn(x=1,2,3 at%)合金在铸态、退火态和挤压态的显微组织与力学性能.结果表明:随着合金中Zn含量的增加,合金显微组织中第二相依次为18R-LPSO相、(LPSO+ W)混合物和W相.在退火过程中,层片状的14H-LPSO结构析出并沿块状18R-LPSO结构向基体中生长,W相由铸态时弯曲的条纹状转变为颗粒状.经过挤压变形后,LPSO结构和W相均沿挤压方向排列,合金性能得到大幅度提高,其中Mg-2Y-1Zn合金具有最好的室温力学性能,抗拉强度为320 MPa,延伸率达到11.2%.
关键词:
镁合金
,
钇
,
长周期堆垛有序结构
,
挤压
,
拉伸性能
王卫
,
张鸿
,
王自东
稀有金属
doi:10.13373/j.cnki.cjrm.2014.01.020
随着汽车和航空工业的飞速发展,对节能减排和轻量化提出了更高的要求,使得高强轻质镁合金有了更大的发展.稀土元素由于具有优异的固溶和沉淀强化效果,能够改善合金的高温和抗蠕变性能,提高耐蚀性,同时稀土元素还具有除氢脱氧、提高铸造性能等作用,从而使稀土镁合金成为研究的一大热点,并在航空航天、电子、汽车、通讯等领域展现出了广阔的应用前景.近年来,通过向Mg-RE合金中加入Zn,Cu或Ni等元素,合理调整合金成分、温度和冷却条件,形成了一种具有长周期堆垛有序结构(long period stacking ordered,LPSO)的有序固溶体.合金经塑性变形后LPSO相呈弥散状均匀分布在基体上,同时细化基体晶粒,极大地提高了合金的强韧性.长周期堆垛有序结构作为镁合金中一种新的有效的增强相,能够显著提高合金的力学性能,具有极大的发展前景.综述了长周期增强镁合金的研究进展和应用现状,主要介绍了Mg-RE-Zn,Mg-RE-Cu,Mg-RE-Ni合金系的国内外研究现状,提出了当前研究需要解决的主要问题,展望了长周期堆垛有序结构增强镁合金的发展趋势.
关键词:
镁合金
,
长周期堆垛有序结构
,
高性能稀土镁合金
,
力学性能
刘欢
,
薛烽
,
白晶
,
周健
,
孙扬善
金属学报
doi:10.3724/SP.J.1037.2013.00188
研究了铸态和挤压态Mg97Y2Zn1合金中长周期堆垛有序结构在高温退火时的组织演化.结果表明,铸态合金由网状的18R-LPSO相、堆垛层错、α-Mg和少量的Mg24Y5颗粒组成.经过挤压后,第二相沿挤压方向呈带状分布,同时在基体内析出大量尺寸细小的14H层片.铸态合金退火初期,14H结构在18R周围的层错区内大量形核,随后18R沿着层错向14H层片转变,14H层片不断增厚和增长,并在退火30 h时体积达到最大.此后继续退火时,18R向14H的转变和14H的溶解同时进行,在退火200 h的样品基体内部几乎不存在14H层片,只在18R相周围有少量残余14H结构.对于挤压态合金,由于挤压时大量形核位置的引入,14H晶核在合金中已大量存在.退火时,18R结构不断溶解于基体中直至全部消失,14H层片则随退火时间的延长连续增长和增厚.当14H层片覆盖基体后,继续延长退火时间,14H层片的增长受到α-Mg晶界阻碍,只发生粗化以及溶解过程.在退火200 h的挤压态样品中,只剩下粗化的14H结构.
关键词:
Mg97Y2Zn1合金
,
长周期堆垛有序结构
,
高温退火,
,
18R
,
14H
刘欢
,
薛烽
,
白晶
,
周健
,
孙扬善
金属学报
doi:10.3724/SP.J.1037.2012.00548
制备并研究了Mg-(2,3,4)Y-1Zn(原子分数,%)三元合金在铸态、退火、挤压和固溶处理时的显微组织和力学性能.结果表明,随着Y/Zn原子比的升高,铸态合金的显微组织由WZ21和WZ31合金的两相组织(o-Mg+Mg12YZn)转变为WZ41合金的三相组织(α-Mg+Mg12 YZn+Mg24Y5).其中Mg12YZn相连接成网状,为18R-LPSO结构,Mg24Y5相分布于Mg12YZn相之间.退火时,WZ21和WZ31合金中部分18R相溶解,基体中析出大量14H-LPSO层片.经过挤压,18R LPSO相沿挤压方向呈带状排列,退火析出的14H层片整体平动,在α-Mg中仍相互平行.固溶处理后,18R相继续溶解,14H相析出并长大.此时,随Y/Zn原子比升高,合金中14-LPSO相体积分数增加.3种合金挤压态的性能优于相应的铸态、退火态和固溶处理态,随着Y含量的增加,合金强度不断升高,塑性下降,挤压态WZ41合金在室温时抗拉强度达到350 MPa以上.
关键词:
Mg-Y-Zn合金
,
长周期堆垛有序结构
,
退火
,
挤压
,
固溶处理