{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用水热法原位法和浸渍法分别制备了La/SBA-15和Fe/La/SBA-15两种SBA-15改性催化剂,两种材料保持了SBA-15材料的高度有序二维六孔结构,并在实验温度范围内具有良好的热稳定性.本文利用松木屑作为生物质原料,讨论了水蒸气流量、实验温度、SBA-15改性催化剂等影响因素对生物质气化过程的影响.一定温度下提高水蒸气流量可促进水蒸气与焦炭反应和焦油的重整反应,降低了焦油和焦炭产量从而提高了产气率;提高温度可以促进焦油的二次裂解;添加La/SBA-15、Fe/La/SBA-15两种催化剂可以促进焦油中难分解物质的裂解以及水与焦炭反应的发生.尤其是Fe/La/SBA-15催化剂,一定温度下提高了产气率的同时提高了燃气的热值.","authors":[{"authorName":"张玉黎","id":"65d4bce9-d669-4b17-9d23-f1d1eabf720a","originalAuthorName":"张玉黎"},{"authorName":"肖睿","id":"a7ae623f-68a7-41d2-b91b-1a2911d67b75","originalAuthorName":"肖睿"},{"authorName":"何光莹","id":"a5f5944e-eee0-47b2-a755-a81c289185c0","originalAuthorName":"何光莹"}],"doi":"","fpage":"173","id":"3158bfeb-5eea-4c37-abeb-eb1f694e4d60","issue":"1","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"081b1f76-dea6-4f6b-b83c-24bec82aa9a7","keyword":"生物质","originalKeyword":"生物质"},{"id":"baf81d8f-2866-45fe-b071-0bcf751300ba","keyword":"Fe/La/SBA-15","originalKeyword":"Fe/La/SBA-15"},{"id":"68d1280b-24f6-428d-9093-4c25fb74884c","keyword":"催化气化","originalKeyword":"催化气化"},{"id":"c5689c2d-eeb0-4090-b6c2-b4efe91a3ad2","keyword":"高热值","originalKeyword":"高热值"}],"language":"zh","publisherId":"gcrwlxb201301043","title":"Fe/La/SBA-15对生物质气化影响研究","volume":"34","year":"2013"},{"abstractinfo":"通过失重法和X-ray衍射分析手段,研究了碱金属盐复合氧化物和卤盐对碳气化反应的影响规律.对于相同的阴离子,钾盐的催化性能好于钠盐,钠盐的催化效果又优于锂盐;对于同一种阳离子的复合氧化物的催化活性规律为:硝酸盐>氢氧化物>碳酸盐>硫酸盐>偏硅酸盐>磷酸盐,对于同一种阳离子的卤盐的催化活性规律为:氟盐>氯盐>碘盐>溴盐.提出了一种新的微观催化机理:碱金属盐的催化作用在于催化剂能改变C-C化学键的作用程度,从而加速反应的进行.催化活性与阳离子、阴离子种类以及化合物的稳定性有关,这3方面因素相互耦合,共同决定添加剂的催化性能.","authors":[{"authorName":"郭培民","id":"647212dd-3b20-4cb2-b97c-2947a2030dd0","originalAuthorName":"郭培民"},{"authorName":"张临峰","id":"ca4a19df-04db-46b4-84ad-095cb4a1c19b","originalAuthorName":"张临峰"},{"authorName":"赵沛","id":"b5c0fbf6-8f6a-4bc7-9abf-fd9521d218ff","originalAuthorName":"赵沛"}],"doi":"","fpage":"26","id":"48ff95cc-b498-49b6-b512-1c5b9b164e64","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"f8148edb-bfff-4b02-b775-872edab92775","keyword":"碳气化","originalKeyword":"碳气化"},{"id":"2c910346-4654-47da-bea9-33ca830054a6","keyword":"催化机理","originalKeyword":"催化机理"},{"id":"59f35253-4976-418e-9613-e62bc20545a9","keyword":"碱金属盐","originalKeyword":"碱金属盐"},{"id":"4135bba8-5502-4f90-ae3a-0db66ff02c04","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"gt200802005","title":"碳气化反应的催化机理研究","volume":"43","year":"2008"},{"abstractinfo":"通过失重法和Xray衍射分析手段,研究了碱金属盐复合氧化物和卤盐对碳气化反应的影响规律。对于相同的阴离子,钾盐的催化性能好于钠盐,钠盐的催化效果又优于锂盐;对于同一种阳离子的复合氧化物的催化活性规律为:硝酸盐>氢氧化物>碳酸盐>硫酸盐>偏硅酸盐>磷酸盐,对于同一种阳离子的卤盐的催化活性规律为:氟盐>氯盐>碘盐>溴盐。提出了一种新的微观催化机理:碱金属盐的催化作用在于催化剂能改变CC化学键的作用程度,从而加速反应的进行。催化活性与阳离子、阴离子种类以及化合物的稳定性有关,这3方面因素相互耦合,共同决定添加剂的催化性能。","authors":[{"authorName":"郭培民","id":"7306ff5c-3c89-479a-b72e-2740319d4aeb","originalAuthorName":"郭培民"},{"authorName":"张临峰","id":"39db7001-1100-42f7-86e1-adc73e6d7f4e","originalAuthorName":"张临峰"},{"authorName":"赵沛","id":"56c124ff-1744-4d94-97d5-1df5d25cdb4c","originalAuthorName":"赵沛"}],"categoryName":"|","doi":"","fpage":"26","id":"7d174013-0feb-4a2c-880f-aeb581ff91e5","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"e5092350-6b32-47dc-9524-47edf57ce30b","keyword":"碳气化;催化机理;碱金属盐;热稳定性","originalKeyword":"碳气化;催化机理;碱金属盐;热稳定性"}],"language":"zh","publisherId":"0449-749X_2008_2_8","title":"碳气化反应的催化机理研究","volume":"43","year":"2008"},{"abstractinfo":"在分析比较目前国际上较好的几种超临界水生物质催化气化制氢实验系统及实验方法的基础上,成功地设计研制出一套连续式超临界水湿生物质催化气化制氢实验系统,简要介绍了该系统的特点及使用该系统取得的初步实验结果,并对各类实验系统存在的问题及待改进处作了分析.","authors":[{"authorName":"郝小红","id":"1b0e4025-147d-4ac8-8da3-76a3503a399d","originalAuthorName":"郝小红"},{"authorName":"郭烈锦","id":"a117dbed-f79a-42ce-9c80-6323da8d24df","originalAuthorName":"郭烈锦"}],"doi":"","fpage":"143","id":"bf654a10-e65f-4175-86e5-6b36ac7d66fb","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e78e9019-7834-410e-baeb-3c5a31c0177c","keyword":"超临界水","originalKeyword":"超临界水"},{"id":"86d9753f-8de1-409a-84cb-cf6506b93577","keyword":"生物质","originalKeyword":"生物质"},{"id":"d580f079-2fa4-4d27-852b-9e9205d1a6f8","keyword":"制氢","originalKeyword":"制氢"},{"id":"0a28f3f4-61b2-4712-8aa0-1dcc01be6882","keyword":"实验系统","originalKeyword":"实验系统"}],"language":"zh","publisherId":"gcrwlxb200202003","title":"超临界水生物质催化气化制氢实验系统与方法研究","volume":"23","year":"2002"},{"abstractinfo":"制备了Pt和Pd负载LaAl11O19整体式催化剂,借助XRD和BET对其进行了表征,同时考察了催化剂作用下模拟生物质气化气的燃烧特性及气化气中加入H2S对可燃成分催化燃烧的影响。结合失活样的XPS、SEM和FTIR表征结果,初步分析催化剂硫中毒的机理。结果表明,制得催化剂活性优良,明显降低了可燃成分的起燃温度,低温下Pd的活性优于Pt,Pd和Pt在抗硫中毒性上是不同的,催化剂失活是通过生成的表面硫酸盐覆盖活性位,失活后有一定的再生性。","authors":[{"authorName":"彭丹","id":"13e16952-2309-4652-b5c3-afff61ba3200","originalAuthorName":"彭丹"},{"authorName":"孙路石","id":"0127dd4a-b7eb-4373-bb1c-c166b45c2f2c","originalAuthorName":"孙路石"},{"authorName":"王志远","id":"6e31d5dd-94d0-49f0-810c-ea836b851f64","originalAuthorName":"王志远"},{"authorName":"向军","id":"90a9b87a-f3fb-4f53-a9a1-1fbaaf83d49a","originalAuthorName":"向军"},{"authorName":"胡松","id":"e506e72f-d873-4308-abcf-60bed61cd1ee","originalAuthorName":"胡松"},{"authorName":"苏胜","id":"75e8966f-86d8-4347-bd47-f66854dd2545","originalAuthorName":"苏胜"},{"authorName":"王鹏恒","id":"272cbf9f-74c7-4b3b-938c-6107410cbb6b","originalAuthorName":"王鹏恒"}],"doi":"","fpage":"1437","id":"b1ed692c-d30b-4a8e-b86b-6aff9377f32d","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"1f3aea44-d75f-4392-924e-f2182e9004b0","keyword":"Pt","originalKeyword":"Pt"},{"id":"4174b276-c10b-4563-9e99-035a8dca5242","keyword":"Pd","originalKeyword":"Pd"},{"id":"d7b7f172-5c70-4c11-b07b-fc5e5d3d9b31","keyword":"催化燃烧","originalKeyword":"催化燃烧"},{"id":"40a99c8b-cef8-4151-ad25-3a51dd9ff069","keyword":"失活","originalKeyword":"失活"},{"id":"1ff17086-6974-498f-a5fd-99b0b8fbe9dd","keyword":"硫中毒","originalKeyword":"硫中毒"}],"language":"zh","publisherId":"gcrwlxb201208040","title":"含硫生物质气化气催化燃烧性能研究","volume":"33","year":"2012"},{"abstractinfo":"改进了液相气化快速致密法制备C/C复合材料的技术,采用高频感应脉冲加热方式,直接对沥青浸渍碳化的预制件进行感应加热,在二茂铁的催化作用下以煤油作为前驱体,建立了一种制备碳/碳复合材料新的工艺方法.该工艺生成热解碳的致密化反应温度为800~1000℃,能在3h内将预制件的密度从0.3g/cm3提高到1.5~1.7g/cm3.通过金相显微镜观察样品在致密过程中不同反应阶段的微观结构,表明在二茂铁催化作用下热解碳在预制件内部多处结晶生长,从而能够降低液相气化致密反应的温度、提高了致密反应的速率.","authors":[{"authorName":"李劲","id":"ab213adb-0f87-487d-b102-d7b64d51c101","originalAuthorName":"李劲"},{"authorName":"陈振华","id":"1a751c6f-1492-4198-8311-ccc175daf9fd","originalAuthorName":"陈振华"}],"doi":"10.3321/j.issn:1000-324X.2005.06.029","fpage":"1450","id":"7a1c258d-1c11-4423-8719-ecb5bfadf33a","issue":"6","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"625b47a8-ed5b-42d3-bb41-8e3666fda123","keyword":"碳/碳复合材料","originalKeyword":"碳/碳复合材料"},{"id":"3843eca9-ffed-444e-9e76-04643ad75523","keyword":"化学液相气化","originalKeyword":"化学液相气化"},{"id":"091a03ea-a1cf-4af7-a1e6-1ad31312152a","keyword":"催化作用","originalKeyword":"催化作用"},{"id":"c32b56b6-01af-4835-9061-176a63c6a30c","keyword":"温度梯度","originalKeyword":"温度梯度"}],"language":"zh","publisherId":"wjclxb200506029","title":"催化型化学液相气化渗透沉积制备碳/碳复合材料工艺研究","volume":"20","year":"2005"},{"abstractinfo":"采用等体积浸渍法制备了不同助剂(Fe,Mg,Mn和Ce)修饰的镍-凹凸棒石粘土基催化剂(Ni/PG),并用于催化裂解生物质气化焦油反应.采用X射线衍射和透射电子显微镜对Ni/PG催化剂进行了表征,并用总碳分析仪测定了催化剂上的积炭.结果表明,助剂的种类及其含量对催化剂性能的影响显著,在所选用的助剂中,Fe助剂入最有利于提高Ni/PG催化剂上焦油的去除率和H_2的收率,且随助剂Fe含量的增加,催化剂活性逐渐提高.","authors":[{"authorName":"刘海波","id":"821cbd7c-c86a-4cc4-ba28-ec70dee6e8f4","originalAuthorName":"刘海波"},{"authorName":"陈天虎","id":"f4b3a901-d582-4efe-9a90-0bdb25236dcc","originalAuthorName":"陈天虎"},{"authorName":"张先龙","id":"7b59266e-f83d-4737-acca-5b98bfbf6f1b","originalAuthorName":"张先龙"},{"authorName":"李金虎","id":"1fd861f7-6eae-45c3-b052-5d28a9ceba1d","originalAuthorName":"李金虎"},{"authorName":"常冬寅","id":"53eeb1f4-deb3-455b-9f99-30e991541517","originalAuthorName":"常冬寅"},{"authorName":"宋磊","id":"edc97ee1-2bf3-4239-b971-1fd095fa8f7c","originalAuthorName":"宋磊"}],"doi":"10.1016/S1872-2067(09)60061-9","fpage":"409","id":"ed77ffca-926e-42df-918a-7959e520cf8b","issue":"4","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"5a4f6f59-360e-4cc7-9055-864106d9ce7a","keyword":"生物质气化","originalKeyword":"生物质气化"},{"id":"13658a88-a88f-45ed-a43b-db72d203d32b","keyword":"焦油","originalKeyword":"焦油"},{"id":"ba24e8a0-1dd0-4031-8cf8-f24ccb5185a3","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"5347dcc6-d38e-4478-8c00-854b05fd8f80","keyword":"凹凸棒石","originalKeyword":"凹凸棒石"},{"id":"bdadec12-952f-41e3-830e-719591f78dc2","keyword":"镍","originalKeyword":"镍"},{"id":"57c09772-b708-4fa9-82de-65ff82b9add1","keyword":"助剂","originalKeyword":"助剂"},{"id":"f04c30b3-4e89-4989-abe4-52c50cc0683a","keyword":"积炭","originalKeyword":"积炭"}],"language":"zh","publisherId":"cuihuaxb201004009","title":"助剂对镍基催化剂催化裂解生物质气化焦油性能的影响","volume":"31","year":"2010"},{"abstractinfo":"以二茂铁为催化剂、有机小分子碳氢化合物为液态碳源,采用化学液相气化沉积工艺制备出密度为1.67 g/cm3的大尺寸C/C复合材料.分析了不同催化剂含量对C/C复合材料基体织构的影响,加入催化剂后材料的组织结构趋向于生成光滑层和各向同性热解碳,并在碳基体中伴生有碳纳米线和多壁碳纳米管的生成.当催化剂含量(<1%)较低、沉积温度较高时有碳纳米线出现,且随着催化剂含量增加,碳纳米线直径由50~100 nm减小到20 nm,长度逐渐增加;当催化剂含量大于1%时,此时出现多壁碳纳米管,直径在30~100 nm之间,项部并有碳包覆金属颗粒的生成.","authors":[{"authorName":"李新涛","id":"2b41f791-a11f-498d-8219-18dc7d70ab4c","originalAuthorName":"李新涛"},{"authorName":"李克智","id":"68bf0b57-eda2-4f72-a635-6579dd7fd6dc","originalAuthorName":"李克智"},{"authorName":"李贺军","id":"e9c52971-ffd2-4699-9309-dd7021b1e585","originalAuthorName":"李贺军"},{"authorName":"魏剑","id":"b11e0d72-987a-4c68-9729-9cb2b962f027","originalAuthorName":"魏剑"},{"authorName":"廖晓玲","id":"b4c55a9f-13f5-44ec-b63a-affdd2d4f673","originalAuthorName":"廖晓玲"}],"doi":"","fpage":"530","id":"a471de0a-7f72-44ea-b141-e24f80e9ccfe","issue":"z3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"fccff1ad-0fe9-42ab-a4f3-965c0b6b247a","keyword":"化学液相气化沉积","originalKeyword":"化学液相气化沉积"},{"id":"a472e0f1-7e69-4dbf-b6e7-fc49edadee9b","keyword":"炭/炭复合材料","originalKeyword":"炭/炭复合材料"},{"id":"7de9283c-a5aa-4187-ada0-b5df419df0f7","keyword":"催化","originalKeyword":"催化"},{"id":"f19ee83a-3a6f-4d2b-828e-aae745723ef2","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"43df27a9-8107-48b3-90aa-d55c0d70398e","keyword":"碳纳米线","originalKeyword":"碳纳米线"}],"language":"zh","publisherId":"xyjsclygc2007z3127","title":"催化剂对化学液相气化沉积制备炭/炭复合材料基体织构的影响","volume":"36","year":"2007"},{"abstractinfo":"利用恒速升温热重法对低温下碳的气化反应进行了研究.结果表明:低温条件下(<1073 K)碳的气化反应符合一级反应规律;减小颗粒度可以提高碳粉的气化性能,特别是当颗粒度减小到一定程度(D50=4μm)时效果尤为显著;催化剂能够提高碳粉的气化性能,使其等动力学温度降低,特别是当细化和催化同时作用时气化反应效率更高;活性炭的气化性能优于相同粒度的石墨粉;未添加催化剂的碳粉具有相似的气化机理;Li2CO3、Na2CO3、K2CO3具有相似的催化机理.","authors":[{"authorName":"张殿伟","id":"0aa1926a-5e13-48c5-865f-02b11321856d","originalAuthorName":"张殿伟"},{"authorName":"郭培民","id":"28053052-0983-47a3-8ebe-6a0a2c56b0e1","originalAuthorName":"郭培民"},{"authorName":"赵沛","id":"79bab71c-8c4d-4f5e-b6fc-757fefcb7ffc","originalAuthorName":"赵沛"}],"doi":"","fpage":"13","id":"0a715762-c33e-4537-8dfd-055e84914c06","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"73312b6f-27d6-444f-b5bd-c65df91494cd","keyword":"气化反应","originalKeyword":"气化反应"},{"id":"67e52d2e-61e9-4aaf-b36e-a878941baae4","keyword":"低温","originalKeyword":"低温"},{"id":"0cbbdbb6-518e-486b-b6fc-3f5dc6081ead","keyword":"碳","originalKeyword":"碳"},{"id":"d0db7e6d-09db-42f1-88c1-b78ab017c19a","keyword":"动力学","originalKeyword":"动力学"},{"id":"d706fef2-8ca3-4472-886b-dcd0d5f8df31","keyword":"补偿效应","originalKeyword":"补偿效应"}],"language":"zh","publisherId":"gt200706003","title":"低温下碳气化反应的动力学研究","volume":"42","year":"2007"},{"abstractinfo":"利用恒速升温热重法对低温下碳的气化反应进行了研究。结果表明:低温条件下(<1073 K)碳的气化反应符合一级反应规律;减小颗粒度可以提高碳粉的气化性能,特别是当颗粒度减小到一定程度(D50=4 μm)时效果尤为显著;催化剂能够提高碳粉的气化性能,使其等动力学温度降低,特别是当细化和催化同时作用时气化反应效率更高;活性炭的气化性能优于相同粒度的石墨粉;未添加催化剂的碳粉具有相似的气化机理;Li2CO3、Na2CO3、K2CO3具有相似的催化机理。","authors":[{"authorName":"张殿伟","id":"84ad54b8-8902-4ef7-b8b5-7ebc59bc0e21","originalAuthorName":"张殿伟"},{"authorName":"郭培民","id":"cd293126-925b-43e8-8bd3-0b075d4a0463","originalAuthorName":"郭培民"},{"authorName":"赵沛","id":"967765b7-070b-4e12-b1b6-77b8f068f20b","originalAuthorName":"赵沛"}],"categoryName":"|","doi":"","fpage":"13","id":"957a985a-2092-4448-8b6c-b337cbdf4659","issue":"6","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"73c9fc86-1c04-42f1-8d9c-3ad5f783f4f0","keyword":"气化反应;低温;碳;动力学;补偿效应","originalKeyword":"气化反应;低温;碳;动力学;补偿效应"}],"language":"zh","publisherId":"0449-749X_2007_6_2","title":"低温下碳气化反应的动力学研究","volume":"42","year":"2007"}],"totalpage":1341,"totalrecord":13406}