胡龙兴
,
杨帆
,
邹联沛
,
袁航
,
胡星
催化学报
doi:10.1016/S1872-2067(15)60939-1
由于硫酸根自由基(SO4?-)的强氧化性,基于SO4?-的高级氧化技术受到人们的高度关注.采用过渡金属活化过一硫酸盐(PMS)产生SO4?-用以分解有机物,反应体系简单,反应条件温和,且不需要额外的能量供给,因此,成为人们优先选用的方法,其中,采用高效、环境友好的非均相过渡金属催化剂活化PMS处理难降解有机物成为研究热点.本文研究了非均相CoFe/SBA-15-PMS体系对水中难降解染料罗丹明B(RhB)的降解.以SBA-15为载体, Co(NO3)2·6H2O和Fe(NO3)3·9H2O为前驱物,采用一步等体积浸渍法制备了CoFe/SBA-15,通过X射线衍射(XRD)、N2吸附-脱附、扫描电镜(SEM)、能谱(EDS)、透射电镜(TEM)和振动样品磁强计(VSM)等对其进行了表征.考察了焙烧温度、Co与Fe的负载量对CoFe/SBA-15催化性能的影响和该催化剂的重复使用性能,还考察了RhB降解动力学及催化剂CoFe/SBA-15投加量、氧化剂PMS投加量和反应物(RhB和PMS)初始浓度对其性能的影响,探讨了RhB的降解机理.结果表明:对于催化剂CoFe/SBA-15,合成焙烧后在SBA-15上负载的Fe、Co化合物主要是CoFe2O4复合物,它作为催化剂的活性中心负载在SBA-15的孔道内外.制备的焙烧温度对CoFe/SBA-15催化性能几乎无影响,但对Co浸出影响显著.与SBA-15相比,催化剂10Co9.5Fe/SBA-15-700(Co和Fe负载量分别为10 wt%和9.5 wt%,焙烧温度700 oC)的比表面积、孔体积和孔径均减小,分别为506.1 m2/g,0.669 cm3/g和7.4 nm,但仍然保持SBA-15的有序六方介孔结构.该催化剂以棒状体的聚集态存在,聚集体直径大于0.25μm,其磁化强度为8.3 emu/g,因此,可通过外磁铁容易地从水中分离.相比之下,10Co9.5Fe/SBA-15-700具有最佳的催化性能和稳定性,可使RhB的降解率达到96%以上, Co的浸出量小于32.4μg/L.在CoFe/SBA-15和PMS共存下, RhB的降解符合一级动力学方程, RhB降解速率随CoFe/SBA-15和PMS投加量的增加和初始反应物浓度的减小而提高.淬灭实验结果表明,在CoFe/SBA-15, PMS和RhB水溶液体系中,存在的主要活性自由基为SO4?-,它是由CoFe/SBA-15活化PMS产生的,对RhB的降解起决定性的作用. RhB降解过程的UV-vis结果表明, RhB的降解途径主要是蒽环打开, SO4?-优先攻击RhB的有色芳香烃环,然后RhB进一步分解为小分子有机物. CoFe/SBA-15循环使用10次仍能保持高催化活性和稳定性,在每次反应中RhB的降解率均大于84%, Co和Fe的浸出量均分别小于72.1和35μg/L. CoFe/SBA-15作为高效、环境友好的非均相催化剂可有效地活化PMS产生SO4?-降解水中RhB,具有实际应用的潜力.
关键词:
钴
,
铁
,
SBA-15
,
过一硫酸盐
,
罗丹明B降解,高级氧化技术,硫酸根自由基
聂刚
,
黄佳
,
胡冶州
,
丁耀彬
,
韩小彦
,
唐和清
催化学报
doi:10.1016/S1872-2067(16)62566-4
过一硫酸盐催化活化技术因其可产生强氧化性活性氧化物种,可快速氧化降解并矿化有机污染物的优异性能而备受关注.本文成功制备了亚微米级Cu0/Fe3O4复合物,发现其能多相催化过一硫酸盐产生单线态氧降解有机污染物.首先,以CuCl2·2H2O,FeCl2·4H2O和FeCl3·6H2O为铜源和铁源,水合肼为还原剂,采用水热法在180oC反应24 h制备了亚微米级磁性Cu0/Fe3O4复合物.表征结果显示,所制材料为Cu0和Fe3O4的复合物,颗粒大小约为220 nm;单一相Cu0和Fe3O4晶体粒径分别为33.8和106.2 nm,而Cu0/Fe3O4复合物中Cu0和Fe3O4晶体粒径分别减为20.8和31.9 nm.这表明Cu0和Fe3O4复合降低了Cu0和Fe3O4晶体粒径,有利于Cu0和Fe3O4的分散.BET测试结果表明,Cu0/Fe3O4复合物比表面积为4.6 m2/g,与Cu0颗粒的(4.2 m2/g)相当,但远小于Fe3O4的(15.6 m2/g).制备的Cu0/Fe3O4复合物可有效催化过一硫酸盐产生单线态氧降解罗丹明B、亚甲基蓝、金橙II、苯酚和对氯酚.当Cu0/Fe3O4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,Cu0/Fe3O4复合物可在30 min内完全降解20μmol/L的罗丹明B、亚甲基蓝、金橙II以及0.1 mmol/L的苯酚和对氯酚.对比试验显示,在相同条件下,Cu0和Fe3O4颗粒分别可以降解28%和20%的罗丹明B.这表明Cu0/Fe3O4复合物中的Cu0和Fe3O4晶体在催化过一硫酸盐降解污染物的反应中具有协同作用,这主要来源于Cu0/Fe3O4复合物中Cu0和Fe3O4的晶体粒径变小和更好的分散.采用分光光度法测定了降解反应液中铜和铁离子的溶出量.当Cu0/Fe3O4复合物的用量为0.1 g/L,过一硫酸盐浓度为0.5 mmol/L和初始pH为7时,反应60 min后,降解液中铜和铁离子的浓度分别为0.22和0.1 mg/L,仅占复合物中总铜和总铁量的1.1%和0.2%,表明Cu0/Fe3O4复合物具有较强的化学稳定性.所制Cu0/Fe3O4复合物具有超顺磁性,借助磁场实现快速分离回收,可循环利用五次,表明其优越的催化稳定性.通过加入乙醇和叠氮化钠,考察了Cu0/Fe3O4复合物催化活化过一硫酸盐体系中的活性氧化物种.发现100 mmol/L乙醇的加入对污染物的降解无明显影响,而加入同等量的叠氮化钠可完全抑制污染物的降解,表明Cu0/Fe3O4复合物催化活化过一硫酸盐产生的主要活性氧物种为单线态氧.采用电子顺磁共振谱进一步证实了单线态氧的生成.基于以上研究,Cu0/Fe3O4复合物催化活化过一硫酸盐的机理为Cu0/Fe3O4作为一个电子媒介加速过一硫酸盐和污染物之间的电子转移,从而导致污染物被快速降解.该反应机理不同于常见的金属催化过一硫酸盐产生硫酸根和羟自由基的反应机理.我们推测,电导性优良的Cu0在此催化反应中起着关键性作用.本催化方法可作为一种绿色的氧化技术用于环境污染物的氧化降解处理.
关键词:
多相催化
,
Cu0/Fe3O4磁性复合物
,
过一硫酸盐
,
单线态氧
,
氧化降解